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ABSTRACT

Current approaches to program analysis largely rely on the use of an intermediate language to
derive intermediate representations of source code or binaries under evaluation. This can sim-
plify semantics when dealing with a complex instruction set such as the Intel Industry Standard
Architecture (ISA) instruction set. However, a question that remains is whether these interme-
diate languages truly retain semantic fidelity or whether elements of the ISA instruction set
get lost in translation. This thesis describes a framework that is being developed at NPS that
accomplishes symbolic execution without the use of an intermediate language and symboli-
cally executes ELF and WinPE binary programs over the native x86 ISA instruction set, and

specifically discusses an approach to describing state mathematically using a formal algebra.
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CHAPTER 1.

Introduction

The ability to monitor the behavior of a computer program during execution has become a
critical capability in computer security. The potential of being able to precisely determine the
behavior of a computer program augments the efforts of a broad range of computer security

research areas including:

e Memory Analysis
o Software Test Case Generation

Software Vulnerability Assessments

Software Optimization

Software Verification

Symbolic execution is an abstraction of the concept of testing every possible input fed to a pro-
gram by tracking symbolic values instead of actual values [1,2]. Coupling symbolic execution
and static program analysis allows us to derive a wealth of information about a binary program
and offer insight into the behavior of the binary program and its supposed functionality. With
symbolic execution, one can reason about all possible inputs that a binary program might accept
when executing. It is not realistically feasible to test every possible input that can be generated
and fed into a program. Conversely, it would be very useful to try to test every input possible

instead of generating a subset of inputs to fuzz test [3—6] a program.

To generalize, we utilize symbolic execution to attempt to test specific properties of a program
we are interested in. As such, employing symbolic execution to perform program analysis re-
quires a precise representation of the constraints that will ultimately provide inputs that lead
to satisfied test cases. For example, if the goal of performing symbolic execution for program
analysis is to determine inputs that will result in stack-based or heap-based buffer overflows,

then it is necessary to know the exact constraints on the inputs that led to the overflow.

Evaluating the flow of programs to determine whether a calculated input leads to a program that
can be framed as a decision problem. That calculated input consists of a set of constraints that
can lead to a potential vulnerability in that binary. To solve these decision problems, these con-
straints must be formally represented and supplied to an evaluation engine that can accurately

determine whether a given path reaches a potentially vulnerable function.



Capturing appropriate constraints is a critical issue when solving decision problems and associ-
ated satisfiability because these constraints capture the state of a program at that exact point in
execution. The language that describes the constraints for any program must be detailed enough
to encompass what an input constraint can be for any given program. Simultaneously, the lan-

guage must be concise enough so that the efficiency of solving satisfiability is maximized.

1.1 Research Questions

This thesis poses a primary question that is addressed in Chapter 4: Can an algebra be devel-
oped to mathematically describe the state of binary code during execution? More specifically,
can this algebra describe the behavior of each instruction in the x86 instruction set, pre- and
postconditions of a basic block within binary code, and the overall state of the binary code

under execution?

To answer this question, an algebraic framework will be developed to describe how the state of
a program under execution can be represented as a set of constraints that will subsequently be

tested for satisfiability in reaching a point of execution.

1.2 Significant Findings

Using native x86 Intel architecture, a framework was constructed to accurately model the state
of binary code under execution through an algebra. Through this algebra, a basic methodology
was constructed to mathematically represent program state at the instruction, basic block, and

program level.

1.3 Thesis Structure

This thesis is organized as follows:

e Chapter 2 gives a background of symbolic execution, discusses some applications of sym-
bolic execution in computer security research, and gives a survey of related work.

e Chapter 3 describes the development of the program analysis framework that utilizes
constraint representation.

e Chapter 4 discusses the algebra that is used to mathematically describe the state of binary
code under execution, and as a result, path constraint decision problems.

e Chapter 5 provides conclusions drawn from the previous chapters and recommended fu-

ture work.



CHAPTER 2:
Background and Related Work

In this section, we provide the motivation behind the project, discuss some key concepts to

provide a context for our approach, and provide a survey of related work in the field.

2.1 Motivation

Computing is now a ubiquitous part of today’s society and is deeply intertwined in day-to-day
operations of the world. The majority of devices used on an everyday basis are powered by com-
puters of various types and the underlying software that allows people to interact with them—
whether they be desktop computers, smart phones, television, cars, or even household appli-
ances. The importance of computing software has reached such a critical level that real-time
systems such as Supervisory Control and Data Acquisition (SCADA) systems are the driving
force behind large-scale industrial systems—such as power centers, water treatment plants, and
gas pipelines—that operate continuously. Along with ever increasing usage and requirements

of software, there has been a substantial growth of complexity [7].

With the many solutions software provides, there are just as many new problems that arise.
Software bugs are prevalent through the lifecyle of any given piece of software and finding them
can prove to be an arduous process. The necessity for finding bugs in the context of information
security is of critical importance because of the dire consequence of not fixing them, whether it

be economic, social, or worse.

There has been a growing trend for malicious software to be spread through the internet, whether
it is to spread indiscriminately, or to be aimed at specific targets [8—10]. Researchers who en-
counter these pieces of malicious software, or malware, in the wild have the job of analyzing
them to understand how they behave and to possibly create countermeasures. There are two

primary approaches to performing this analysis: static analysis and dynamic analysis [11].

Static analysis is the act of analyzing a piece of software, whether it is source code or a compiled
binary without actually executing the program. With compiled binary programs, the analysis
typically involves disassembling the program to recover the program’s assembly code instruc-
tions, or to go further and attempt a decompilation of the program by turning the disassembly

back into a high-level language (e.g., C/C++). Unfortunately, there are problems with trying to



fully decompile a program and Eagle [12] describes them well:

The compilation process is lossy.

Compilation can be a many-to-many operation.

Decompilers are very language, compiler, and library dependent.

A nearly perfect disassembly capability is needed in order to accurately decompile a

binary.

Working with the disassembly may be more attractive than trying to decompile a program when
performing an analysis since the disassembly is easier to obtain with some degree of accuracy

but the problem remains that disassembly, by nature, is imperfect.

With tools like IDA Pro [13], a program analyst can disassemble a compiled binary and proceed
to perform a manual static analysis of that program to ascertain the program’s behavior and
possibly determine vulnerabilities that exist within the program. Depending on the skill level
and experience of the analyst, this can be a very effective process for a single program, but may

take a long time.

Dynamic analysis is the act of allowing a program to execute and within a carefully controlled
environment, often known as a sandbox, while the analyst observes the behavior of the program
through system instrumentation. In this scenario, the analyst instruments a binary in a sandbox
environment such as a virtual machine to observe program behavior at several levels: the process
level, the registry level, the network level, or the storage level, depending on theplatform. This
offers some advantages over static analysis, most notably, savings in time to understand some
of the behaviors of the program. Instead of poring over lines of disassembly, an analyst can

execute a program and observe changes to the program environment as the program runs.

Dynamic analysis can certainly provide cost-savings with time but may be subject to other
disadvantages. Some malicious software will check for the presence of instrumentation or query
the environment in which it is operating. If the software is being run under debugger control, for
instance, the process may choose to exit on its own before any salient behavior can be observed.

Such techniques are called anti-debugging techniques [14, 15].



2.2 Disassembly and Intermediate Language Limitations

2.2.1 Disassembly Limitations

By nature, disassembly of a program binary is imperfect. These imperfections can be catego-

rized as follows [16]:

e False Positives: Misidentified instructions

e False Negatives: Non-disassembled instructions

A disassembler’s job is to determine whether an instruction should be disassembled or not based
on whether it is referenced by another instruction [12]. The behavior of these instructions will
determine how the program’s control flow is represented during the disassembly of a program.
The accuracy and precision of a disassembler is predicated on its ability to recover data type
information, distinguishing instructions from data, platform dependencies of the disassembler,
and library function identification. The ability to accurately and precisely address these critical
areas of a program are what drive results of a good disassembler [17]. Impediments to accurate

disassembly include the following [16]:

Data embedded in the code regions

Variable instruction size

Indirect branch instructions

Functions without explicit CALL sites within the executable’s code segment

Position Independent Code (PIC) sequences

Hand crafted assembly code

Further, techniques exist that attempt to counter a disassembler’s ability to properly disassem-
ble a program. These anti-disassembly techniques are methods that cause a disassembler to
generate an incorrect or incomplete disassembly listing. Generally, programs that make use
of anti-disassembly techniques contain instructions that, when interpreted by the disassembler,
effectively confuse it and cause it to misidentify the correct instruction bytes at the time of
disassembly [18]. This can lead to improperly identified instruction sequences, incomplete in-

structions sequences, or cause the disassembler to miss sections of code altogether.

Malware authors commonly try to incorporate anti-disassembly techniques to thwart analysis
of malicious software through obfuscation techniques. These techniques include, but are not

limited to self-modifying code and virtual machine based obfuscation [14,19]. These techniques



can obscure real code with code that visually may or may not make sense to an analyst but
ultimately offers code that can lead to an incorrect analysis. A comparison can be made with
Figure 2.1 and Figure 2.2. Figure 2.1 shows what IDA Pro displays of an unobfuscated binary
(hello world) after initial analysis, whereas Figure 2.2 shows what IDA Pro displays of an
obfuscated binary (hello world) after initial analysis. In this case, the obfuscation technique
comes from using the Ultimate Packer for eXecutables (UPX) [20].

L kext:0804B3B4 ; s===ss=sssososs SUBROUTI N E ss=sssssossossssssososSoSSSSSSsSSSasssss
.text:0804B3B4

.text:080483B4 ; Attributes: bp-based frame

.text:0804B3B4

Jbext: 08048384 public main

Jbext: 08048384 main pProc near
Jkext:080483B4 push abp
Jkext:0804B3B5 mov ebp, esp
Jkext:08048387 and asp, OFFFFFFFOh
Jtkext:0804B3BA sub asp, l0h
.text:0804B3BD mov dword ptr [esp], offset s ; "Helleo, Werldl"
Jbext:0804B3C4 call _puts
+Aext:0804B3CH mov eax, 0
+kext:0B04B3CE leave

+kext:0B04B3CF rakn

Jkext:0804B3CF main andp

.text:0804B3CF

.text:080483D0

L text:0804B3D0 ; ====ss=s=ss==== SUBROUT I N E =====cs===ss=sss=ssssssossssssssssss=ss

Figure 2.1: Disassembly of the Main Function to a Hello World Program (Taken from IDA Pro)

Additional comparisons can be made when inspecting a control flow call graph of both “hello

world” iterations.

2.2.2 Intermediate Language Limitations
Intermediate languages are a ubiquitous part of program analysis because of their use in com-

pilers [21]. One the main attractions of intermediate languages is how they:

e Reduce semantic complexity during analysis
e Allow code transformations for different architectures from one source

e Allow code analysis optimization

Intermediate language (IL) frameworks like LLVM (formerly standing for Low Level Virtual
Machine) [22] are popular because of their ability to retain and honor the semantics of a piece of
source code [21], though the extent to which each IL framework honors the original semantics
differs based on the depth and complexity of the framework itself. This is advantageous for
compilers at various stages of compilation since it allows developers to write compilers that
can be used across different OS platforms. For program analysis frameworks [23,24], an IL can

simplify the semantic complexity of a CPU instruction set by abstracting away from mnemonic



LOAD: DOC&4DBE
LOAD: DOC44DBE
LOAD: DDC44DBE
LOAD: DDC44DBE
LOAD: DDC44DBE
LOAD: DDC44DBEE
LOAD:D0C&4DBE
LOAD: DDC44DBEE
LOAD:DOC44DBE
LOAD: 00OC44DBEE
LOAD: DOC44DBE
LOAD: DOC&4DBE
LOAD: DDC44DBE
LOAD: DDC44DBE
LOAD: DDC44DBE
LOAD: DOC&4DBD
LOAD: DDC44DBEF
LOAD: DOC44DBF
LOAD : DOC4&4DCO
LOAD:DOC44DC1
LOAD: DDC&4DC2
LOAD: DOC&4DC3
LOAD: DDC4&4DC4
LOAD: DOC4&4DCE
LOAD: DDC4&4DCD
LOAD: DDC44DECD
LOAD: DOC&4DCD
LOAD: DDC44DECD
LOAD: DOC44DCE
LOAD: 00C44DD2
LOAD: DOC4&4DD6
LOAD: DOC&4DD9
LOAD: DDC44DD9
LOAD: DDC44DDAE
LOAD: DODC44DED
LOAD: DOC&4DED
LOAD: DDC44DED
LOAD:DOC4&4DE2
LOAD: 0OC44DE3
LOAD:DDC44DES

; emmeeneesessmses B 0 B R O U T T N B o o o o o e s o o s o e s e s e e e e s s

public start

start pProc near

var_4 = dword ptr -4
arg 0 = dword ptr 4
arg 4 = dword pktr 8
arg B = dword ptr OCh
arg € = dword pkr 10h

; FUNCTION CHUNK AT LOAD:0DDC44EF6 SIZE 00000033 BYTES

call lec_c45042

jmp short loc_C44DCD
pop edx
POp aax
pop acx
xchg eax, edi
pusha
mov dl, [esp+EN
jmp loc_C44EDF
loc_C44DCD: ; CODE XREF: start+51j
pusha
mov esi, [esp+20h+arg 0]
mov edi, [esp+20h+arg 8]
or ebp, OFFFFFFFFh
jmp short loc_ C44DEA
align 10h
loc_ C44DED: 7 CODE EREF: start+38))
mowv al, [esi]
ine asi
mov [edi], al
ine edi

Figure 2.2: Part of a Disassembly to a Hello World Program Packed with the Ultimate Packer for
eXecutables (UPX) (Taken from IDA Pro)

operation details. However, the design of an IL language leads to issues including the following

[21]:

Depth level—In particular, how machine-dependent it is
Structure of the language
Expressiveness—How accurately does it honor original source program semantics

The types of transformations that can be performed on the IL representation of a source

program

It may be the case that IL frameworks dilute the semantics from the original source. An IL

and its corresponding translators must be sufficiently rich to express all the behaviors in an

instruction’s operation. This can be rather difficult since the behavior of x86 can occasionally



; Attributes: bp-based framea

public main
main proc near
push abp

mov abp, esp

and asp, OFFFFFFFOh

sub esp, LOh

mov dword ptr [esp], offset s ; "Hello, Worldl"”
call _puts

mow eax, 0

leave

retn

main endp

Figure 2.3: A Simple Hello World Graph (Taken from IDA Pro)

be undocumented or documented in an ambiguous manner, and not necessarily mathematically
rigorous. Given this, our approach to analyzing a program is to do away with an IL altogether
and consider the native x86 assembly as it is encountered during symbolic execution. This may
lead to a higher level of complexity when reasoning over native Intel x86 architecture with no

abstraction.



Figure 2.4: A Decidedly More Complicated Graph of Hello World with UPX (Taken from IDA Pro)



2.3 Symbolic Execution

Dynamic analysis is an attractive approach to performing program analysis because it offers the
ability to monitor code and program state as it executes. Symbolic execution is an abstraction
of normal program execution, where a program is symbolically executed not on a set of sample
concrete inputs but rather a set of classes of inputs [2]. This can be interpreted as executing over
a set of variables that eventually become bounded to sets of values, which leads to demonstrating
desired program properties. Contemporary symbolic execution is a form of dynamic analysis
used to constrain the reasoning of a symbolically executed program to logical constraints that

are then fed into a model to solve for satisfiability [1].

Symbolic execution is a powerful tool to use when performing dynamic program analysis but
there are advantages and disadvantages to the approach. Symbolic execution, by its nature has
no runtime context. This is because the initial input, when symbolically executing a program,
is unconstrained. In other words, the data domain is unbounded. This allows a complete and
exhaustive exploration of all runtime state space in a given program. Since the input is uncon-
strained, it can be “anything”, and code dependent on the symbolic input can be used to build
logical path constraints that can be used to explore runtime states that may be of interest. In
other words, symbolic execution operates on all possible sets of values, whereas normal (con-
crete) execution operates only on a single possible set of concrete values that have been defined
by the program’s author or inputted by the program user [25].

The first step in symbolic execution is to generate a Control Flow Graph (CFG). A CFG is an
abstract representation of all possible paths that can be traversed through a program during its
execution using a directed graph, or digraph. In a CFG, each node in the digraph represents a
basic block of program instructions. A basic block is defined by Aho, Sethi, and Ullman [26]:

The block of instructions has one entry point.

The block of instructions has one exit point.

Each instruction in a basic block executes before all succeeding instructions in later posi-

tions in that same block.

No other instruction executes between two instructions in the sequence.

The first instruction in a basic block is known as a leader. The rule for finding leaders are:
1. The first instruction is a leader.
2. Any instruction that is the target of a conditional or unconditional jump is a leader.

3. Any instruction that immediately follows a conditional or unconditional jump is a

10



leader.
e A basic block consists of a leader and all instruction up to, but not including, the next

leader or the end of the program.

In the CFG, directed edges represent jumps in the program execution, each edge is a boolean
“truth value” for the condition. Figures 2.5, 2.3, and 2.4 illustrate what a CFG can look like.

; Attributes: bp-based frame

public main
main proc near

arg_ 0= dword ptr 8

push abp

mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov eax, [ebptarg 0]
mov [esp+1Ch], =ax
cmp dword ptr [esp+lCh], 9
ja short loc BO4B83D9
T T
A J Y
[T e B
mov dword ptr [esp], offset s ; "Hellaol'
call _puts loc_80483D9: ; "CGoodbyal
jmp short loc BD483ES mov dword ptr [esp]|, cffset aGoodbye
call _puts
il s =
loc_B0483ES:
mowv eax, 0

leawva
retn
main endp

Figure 2.5: A Simple Example of a CFG (Taken from IDA Pro)

In the context of finding bugs in a program, symbolic execution helps determine inputs that lead
to memory corruption or unexpected paths. The reasoning here is we want to find inputs that
will eventually lead to a certain point in the CFG so that we can backtrace to see what concrete
inputs will cause us to go down that particular path, whether a memory corruption occurs or not.
The CFG is used in the analysis to determine the path or paths that will indeed result in memory
corruption of a given program. More precisely, we want to derive the set of classes of inputs
that will lead us to reachable paths in a programs execution that result in memory corruption,
by reasoning over the symbolic values assigned to the program being tested. When reasoning
over the symbolic values during analysis, there are conditions (e.g., concrete values or sets of

concrete values) that are derived as a result of a path being taken. These path conditions, or

11



path constraints, are the Boolean statements that form the conditional statements encountered
at each node. Essentially, each set of path constraints can be associated with each digraph edge

on a given path.

When a suitable path has been determined, the corresponding set of path constraints are used to
determine path reachability with a theorem prover. That is, the set of path constraints are the set
of classes of inputs that may lead to a memory corruption if they can be proven satisfiable with

a theorem prover.

The approach to using symbolic execution to generate logical path constraints and solve the
boolean satisfiability of the constraint formula is complete and exhaustive, but it is an NP-
complete problem making it infeasible to be able to completely solve all possible cases of satis-
fiability [27]. This is because any non-trivial path constraint may consist of so many terms that
iterating through every possible assignment for the Boolean variables would never complete.
This is part of the state, or path, explosion problem that exists for symbolic execution. Any
non-trivial program has an intractable number of execution paths. Because of this, there are
many approaches to dealing with path selection as well as slicing portions [28] of the program
that will be symbolically executed for analysis. Despite the difficulties of iterating through all
possible results, solving such path constraints has been made tractable, in some cases, with the
use of theorem provers, such as satisfiability (often abbreviated to SAT) solvers, in a reasonable

amount of time! [27,29].

Existing symbolic execution engines try to take into account external system and library calls
made by the binary but their respective implementations are limited by design complexity or
scope complexity [30]. Our engine analyzes the system of software that is associated with a

binary program. This includes:

e The binary under analysis

e Any dynamic library code used by the program

Below, we describe related work on other program analysis platforms and work done in reducing

the problem of state explosion.

BITBLAZE. BitBlaze [23] is a platform of binary analysis tools that combine different ap-

proaches of analysis. The platform is made up of three primary components: Vine, TEMU, and

I'There are, of course, path constraints that still require more time to solve than there are years in the Universe.
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Rudder. Vine is the static analysis component of the platform that raises the binary machine
code to an IL. TEMU is a program emulator that performs extensive traces of a program and
outputs the trace to a file for later analysis. Rudder is used to provide both concrete and sym-
bolic execution capabilities. In order to translate binary code into the IL, a disassembly output is
created then passed to VEX, a third party library that is part of the Valgrind dynamic instrumen-
tation tool [31]. Finally, the VEX IL output is translated to Vine IL. TEMU is a whole-system
emulator based on QEMU [32] and used to instrument a binary for analysis. Rudder performs
as a TEMU plugin and performs much of the navigation during binary instrumentation. It de-
termines whether instructions should be symbolically or concretely executed, performs path

selection at each branch, and encodes the path constraints for SAT solving.

BitBlaze was developed to analyze x86 binaries but work has begun to expand it to other plat-
forms with the use of their Vine IL. It has been used academically and in industry to find bugs

in binaries.

KLEE. Klee [24] is a symbolic execution platform that was redesigned from another tool origi-
nally named EXE [33]. Klee was designed to perform deep checking of applications and max-
imize code coverage across diverse classes of programs written in C. Klee is built upon LLVM
to help with the symbolic execution of the intermediate representation (IR) of programs under
testing. A program considered for testing is compiled into LLVM bytecode, the IL that provides
the IR for analysis. Klee then runs on the IR to perform the symbolic execution using STP, an

SMT-based constraint solver, [34] for solving path constraints.

Klee has been used both academically and in industry to conduct code coverage [24]. It has also
been extended by users and subsequently had some of these extensible features integrated into

the Klee core platform.

CODESURFER/X86. CodeSurfer/x86 [35-37] is a platform that utilizes abstract interpretation
[38], a generalized case of symbolic execution to recover an IR of an executable. The recovered

IR includes CFGs, information about the program’s variables, and data dependencies.

According to the Grammatech website [37], CoderSurfer/x86 is a research prototype and not a

commercial product, but is known to be used for academic research.

DART. DART (Directed Automated Random Testing) [39] is a symbolic execution platform
that aims to systematically test all feasible paths of a program. One if its key values is the ability

to reduce imprecision and computation time in the symbolic execution on an application under
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test by using concrete values at branch instructions that are of interest. DART was originally
implemented at Bell Labs by Patrice Godefroid.

SAGE. SAGE (Scalable, Automated, Guided Execution) [4,5] is a platform that uses symbolic
execution to perform x86 instruction-level tracing and emulation. The main difference here,
and hence why the authors refer to this analysis process as fuzzing, is because it uses a well-
formed input as opposed to assuming an unconstrained input. This well-formed input is used
to derive path constraints as each branch instruction is executed. SAGE is based on DART [39]

but optimized for large applications.

SAGE is developed and maintained by Microsoft and is heavily used to find bugs in develop-

ment and commercial releases of their software.

PIN and DynamoRIOQ. Pin [40] and DynamoRIO [41] are both tools that allow dynamic binary
instrumentation of a piece of software under test. This allows analysts to execute a program and
perform transparent analysis. This means that you can, for instance, inject analysis code into
a program during runtime execution. The platforms operate on single user-level processes and
do not differentiate the runtime execution environment of each respective tool and the program

under instrumentation.

Pin and DynamoRIO were both developed under industry and academic collaboration and have
been applied to both fields.

VALGRIND. Valgrind [31] is a dynamic binary instrumentation platform, similar to Pin and Dy-
namoRIO but is specific to UNIX/Linux variant OS environments, where Pin and DynamoRIO

are available for UNIX/Linux and Windows OS environments.

Valgrind has been used in both academic and industry work.

2.4 Computational Complexity Issues

With all these criteria that go into analyzing a binary, it is important to note that the com-
putational complexity grows when dealing with the state explosion problem associated with
program analysis. In order to provide some context, consider the state space of a program under
execution. It is possible, theoretically, to explore all states in order to derive path constraints and
check properties in question. In practice, this is realistically unfeasible because of the number

of transitions that can occur at each conditional branch instruction. This challenge is known as
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the state explosion problem and significantly complicates program analysis [42].

To provide some more context to this problem, imagine looking at a control flow graph of
Microsoft’s word.exe executable. This binary can be considered fairly complex because of the
number of calls to other libraries—we will call them libaries set A—it needs to function as
well as other libraries—we will call them libraries set B—that A must call. Under evaluation,
word.exe can execute hundreds of library calls on top of executing a number of functions in
the start up procedure. These functions can lead to branch instructions that can result in a large
number of realized transitions. If the program were to theoretically continue generating parallel
transitions through its execution lifecycle, we can see that the number of states would expo-
nentially increase. If were to attempt to explore each state in either a breadth-first or depth-first

manner, we can see this become an intractable task.

Aside from the intractability issue associated with exhaustively exploring the state space of
a program, we also need to consider current technology when trying to tackle this problem.
Using the word.exe example above, we also need to consider resources utilized during state ex-
ploration. If word.exe generates T number of threads and we are trying to evaluate this program
symbolically with C number of processors, we can assume that T/C threads will be mapped onto
each processor, assuming each processor receives an equal number of threads. Given a normal
producer/consumer relationship among the threads (i.e., the threads can share common process
resources), and assuming an amount M of system memory that is allocated per thread, we will
require (T*M)/C amount of memory. If we consider C to be a very small number compared to T,
and T can continually grow during a program’s execution (i.e., T can theoretically approach in-
finite, and C stays finite), then the amount of memory required explodes and also tends towards
infinite. This, however, is limited by current technology where the amount of memory can tend
towards infinite but is bounded by address space limits. For example, a 32-bit x86 process is

bounded by a 4GB process memory address space.

Figure 2.6 shows a simple program visualized by its CFG. It is interesting to note how complex a
seemingly simple program can be after it has gone through the compilation process. Appendix A
and Appendix B provide the source and disassembly listing from IDA Pro, respectively for

further reference.
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Figure 2.6: A Functionally Simple Program Visualized by Its CFG (Taken from IDA Pro)

2.4.1 State Explosion Research

Scalability issues illustrated above has been a topic of research for quite some time [43—46] and

is an obstacle when dealing with the complexity of program analysis.

The task of complete code coverage in program analysis is realistically impossible as the state
space of a program is generally too large to be exhaustively explored. Because of this funda-
mental problem, there has been research related to managing and dealing with state explosion
that attempts to create precision in code coverage and program slicing [28] to try to reduce the

state space when analyzing source code or binaries.

Boonstoppel [47] proposed a technique for detecting and pruning large numbers of redundant
paths while analyzing program source using EXE [33], an older variant of the KLEE [24]
program analysis platform. The idea is to mark memory locations—that is, taint [1] those
locations—during symbolic execution and truncate exploration of paths that are algorithmi-
cally determined to produced effects that have been seen before. This dramatically reduces the
state space since the symbolic execution engine is not revisiting duplicate states and repeatedly

executing branch instructions that do not yield interesting results.
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Godefroid [42] suggests he notion of state space exploration can be thought as the follow-
ing: concurrent executions of branch instructions are partial orders where concurrent “inde-
pendence” transitions should be left ordered. He asserts that transitions should be considered
independent when the order of executions is irrelevant. Based on that idea, he uses this notion
to determine possible “valid” dependency relations for branch executions of a given Labeled
Formal Concurrent System (LFCS). Following that, he uses the logic that if a state is reachable
by any sequence of transitions in a trace, it is sufficient to only explore one sequence in that

trace, thus reducing the amount of state space required to visit during path exploration.

Godefroid and Khurshid [48] implemented a genetic algorithm framework to exploit heuris-
tics for guiding search in the state space of concurrent reactive systems to find errors including
deadlocks and assertion violations. The reasoning behind this is that a genetic algorithm will ex-
ploit heuristics that simulate natural-evolution processes like selection and mutation. Mapping
this back to state space exploration, the algorithm measures the fitness of a path and determine
whether that path is fit enough for exploration. Otherwise, a path deemed to be “fitter” for
survival (i.e., net more interesting results) will be explored within a selection of branch instruc-
tions. This approach appears to outperform random and systematic searches when exploring

large state spaces.

Li [49] proposed a context-sensitive relevancy analysis algorithm that uses weighted pushdown
model checking to derive memory locations in a program where symbolic values can be in-
putted. The resulting output information is then utilized by a code instrumenter to transform
relevant segments of a Java program with symbolic constructs. This creates a more precise path
of execution by only executing branch instructions that appear to have more contextual rele-

vancy to the function of the program.

Godefroid, Holzmann, and Pirottin [50] discussed the problem of storing states in the face
of state explosion by describing states derived from branch executions that lead to the same
state in subsequent state transitions. By determining those redundant states, and consequently
determining that the most reachable states only get visited once during state exploration, the
concept of state-space caching during program analysis can become a more viable option to

reduce state space exploration and speed up analysis.

Despite all the claims made by academic researchers, Pelanek [51] reported in 2009 that many
research papers make unjustified claims about respective techniques that attempt to manage the

state explosion problem. Pelanek’s complaint is that the research does not consider realistic eva-
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lution scenarios and includes poor experimental standards. As a result, this limits the practical

application of the results.
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CHAPTER 3:

Symbolic Analysis Framework

When applying program analysis techniques, the primary technical challenge is approaching the
analysis of a compiled binary itself and working with the machine code that makes up the binary.
It is logical to assume that a typical analyst does not have access to source code for many of the
Commercial-Off-the-Shelf (COTS) programs that are run on a computer. For example, a typical
analyst would not have access to Microsoft’s source code for the Windows OS or for Microsoft
Word. If this analyst were astute enough to try to analyze the Word program binary code, it
would quickly become clear to the user that the sheer volume of machine code to sift through
would be overwhelming. Malware authors do not simply provide source code to the programs
that are being distributed. As alluded to earlier in Chapter 2, malware authors frequently attempt
to create countermeasures to program analysis by applying various anti-analysis techniques to
raise the cost of time and resources for an analyst or analysis engine to correctly ascertain the

behavior and function of the malware binary.

To that end, a symbolic analysis framework offers a logical method for analyzing machine code
taken from a binary. Machine code is what the CPU fetches, decodes, and executes, therefore
the logical conclusion is machine code will provide the ground truth for tests, evaluations, and
applications. The following chapter is dedicated to providing some insight into the architecture
of the framework and discuss the goals of the framework.

The architecture for the framework, is a modular and tightly integrated analysis suite. This suite

consists of four core pieces:

1. The Core Emulation/Analysis Engine
2. The Algebra Engine

3. The Taint Engine

4. The SAT Solver

Figure 3 shows a notional diagram of the information flow between the framework elements.
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Figure 3.1: A Notional Diagram of Analysis Framework

3.1 Emulation Engine

The emulation engine of is the brain of the framework. It drives all other functionality and
provides the information for the other framework elements to function. Functionally speaking,
the emulation engine performs the program-wide symbolic execution, which allows granular

monitoring and instrumentation.

The symbolic execution engine is considered partial-system because a user space environment
exists for binary code to be executed. This includes the provision of a minimal set of OS ser-
vices, virtual memory address space, system and application libraries, and even actual applica-
tions, allowing us to observe behavior from the application-layer down to the actual machine

code being executed. There are several motivating factors that drive this approach:

e Analyzing software, particularly malware, requires introspection at the machine code and
instruction level to discern interesting behavior.
e Like COTS virtual machine software, a platform that allows partial-system emulation

offers realism for sandboxing during an analysis. In general, virtual environments can be
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viewed as native operating environments to garner precise and accurate observations?.

e Like COTS virtual machine software, there is generally good isolation between the anal-
ysis environment (sandbox), and the host machine, providing a safer environment to con-
duct analyses.

e An environment that allows instrumentation of the binary under test provides an environ-
ment conducive to isolating the analysis tools from the binary code under test to guard
against interference during analysis or bad results.

e Analyzing binary code, for our purposes, requires software-level introspection to derive
accurate and precise results. We need to be able to observe application-level interactions
while concurrently observing instruction cycles as the program executes.

e We also require an ability to mark, or faint data—specifically, user-supplied data—and

observe how it propagates through an application’s state space.

The emulation engine acts as a virtual machine that has its own CPU, and its own allocated
memory. When a 32-bit program is run with the engine, a 4GB virtual address space is mapped
for a binary code under test. Associated libraries are mapped and monitored, which is critical for

keeping track of how the control flow of a program progresses as the program state is explored.

The approach for our symbolic execution is just-in-time execution, where there is no apriori
knowledge of the program before execution, and calculations are done as demanded. This idea is
taken from the business concept where objectives are met through intelligently signaling differ-
ent points of the workflow process to indicate when an event should occur [52]. The motivation
behind this is that we endeavor to create an accurate depiction of how a program would execute
on a system. The omniscient view requires apriori knowledge which, in most cases for a given
framework, are derived from a disassembly. The problem with disassembly representations were
mentioned in Chapter 2; Indeed, the primary concern is the accuracy of the disassembly output.
If a program has anti-analysis techniques applied including anti-disassembly techniques, then
the disassembly output may not be useful. Given this, we opted to eliminate the dependency on

any type of omniscient view of a program for the time being.

During a program’s symbolic execution, each instruction cycle is interpreted by the engine’s
CPU and the corresponding operation is performed against the current program state. The fetch-
decode-execute cycle is performed by retrieving a program instruction, interpreting the action(s)

required by decoding, and then executing the interpreted action(s). Within this process, the

2This assumes the binary code under test does not have anti-VM techniques implemented.
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symbolic execution engine will signal other modules to perform analysis operations during

each instruction cycle.

3.2 Algebra Engine

The name of the engine is taken from the fact that we are attempting to mathematically compute
invariants of binary code under test by calculating the pre- and postconditions of a basic block
of instructions. To summarily provide context, a basic block is a sequence of instructions with a
single entry point and a single exit point. This means that the first instruction of the basic block
denotes the start of the sequence of instructions, there is no jump instruction anywhere into or
out of the sequence, and the last instruction of the block denotes the end of the sequence of
instructions. When a basic block executes and the first instruction is executed, the rest of the

instructions in the sequence must execute exactly once, in the exact order of the sequence.

We base the foundation of the algebra engine on the work of Reinbacher and Jorg [53]. Our

goal is to build upon the foundations of their paper to accomplish the following objectives:

e Simplify re-calculation for redundant instructions.

e Allow the pausing and resuming of analysis. If a given basic block is already has pre-
and postconditions calculated for a given set of inputs, then re-calculating over identical
inputs is unnecessary.

e Assist with abstracting up for analysts to see the beginning and end results for a given
basic block. This helps avoid “getting lost in the weeds”.

e Help with SAT-based operations to maintain soundness.

The algebra engine will run as a instrumentation tool that is signaled by the execution engine.
Using logic built into the emulation engine, it will perform control flow and data flow analysis.
Generated results from both the control flow and data flow analyses will be fed to the algebra

engine where state will be recorded for each instruction that is retrieved.

Further discussion and exploration of the algebra engine will be discussed in Chapter 4.

3.3 Taint Engine

The taint engine is the framework module that will track and mark input that appears to come
from a user. The reasoning behind taint analysis is that any input that comes from user-supplied
data and modifies, or has the potential to modify, the flow of execution poses a risk to the

binary that is being executed. For instance, a basic stack-based buffer overflow can occur if
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user-supplied data is able to write past the end of an allocated data buffer, resulting in the
overwrite of a function return address. This can lead to the execution of user-supplied code

which can lead to major security risks to the underlying operating system.

Common vulnerabilities such as stack-based buffer overflows, heap overflows, and format string
vulnerabilities allow attackers to overwrite critical values in a program such as return addresses
or function pointers that should not be derived from user input [54]. Based on such observations,
dynamic taint analysis has gained popularity as it allows the tracking of user input and other
untrusted data as it flows through a program at runtime and determines whether untrusted data

is being used in an unsafe manner [1,55].

Our taint engine aims to follow the basic taint workflows many other taint analysis frameworks

contain:

Taint Tagging The process of defining what sources are untrusted and what should be tagged
as tainted. This is determined before binary code execution and is usually associated
with registers and program memory. These registers and memory space are initialized as
untainted to begin with.

Taint Propagation The process of defining what computations allow the spreading of taint tags
and how they propagate through the control flow of a binary code under execution. As an
example, assignment operations such as mov, add, sub, or, etc. are x86 instructions that
might help propagate tainted data, though there are edge cases where tainted data can be
overwritten by untainted data. For example, xor eax, eax would result in tainted data
residing in register eax to be zeroed out. Taint propagation runs concurrently with taint
checking as each instruction will go through a taint propagation and taint check process.

Taint Checking The process where tainted data is being checked to see if it is being misused to
alter program control by identifying “critical” computations or operation. Taint checking
and taint propagation run concurrently since each instruction needs to be checked to see
if it is unsafe. If an instruction is identified to be unsafe and is about to be executed, the
taint status of all operands, registers, and memory are checked. That is, the state at that
instruction is checked for taint. For example, an unconditional jmp instruction may be

identified as a critical instruction.

Most taint methods simply track whether a bit in memory or in the general registers is tainted
and provide no further information regarding where tainted data comes from. Our method aims

to more precisely monitor the source of tainted data, rigorously specify what x86 instructions
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should propagate taint, and what instructions need to be monitored for misuse so that we can

clearly delineate what values need to be tracked in order to characterize a potential vulnerability.

3.4 The Theorem Prover

The theorem prover is a module that takes path constraints that are derived from the pre- and
post-conditions that the algebra engine generates and checks to see if path reachability is possi-
ble for a given set of inputs. Essentially, path constraints are a formula of Boolean variables that
are calculated to see if it evaluates to TRUE (or SAT, short for satisfied). If the formula is not sat-
isfiable, then the evaluation returns FALSE (or UNSAT, which stands for unsatisfied). The goal
here is to determine whether a particular path taken in a program’s execution control flow is ac-
tually reachable or not. The results are then provided back to the rest of the framework to derive
other information that will further the analysis of binary code under test. One primary question
surrounding the reachability of a path concerns the steps taken during symbolic execution to
reach that path and what data was supplied during execution to get there. If there is potential
for tainted (user-supplied) data to be provided to reach a path of interest, then it is possible
to repeatedly generate the path conditions that lead to interesting actions of binary code under
test. Current theorem proving tools utilize Boolean Satisfiability (SAT) decision procedures or
Satisfiability Modulo Theories (SMT) decision procedures [34,43,56].

Theorem proving can also be understood as a decision problem. The Boolean formula is in-
putted into the solver which uses an algorithm to determine a “Yes” or “No”. Symbolic exe-
cution is complemented by this approach to solving a decision problem from a formal system
given how closely related they are. These algorithms, or decision prcedures [57, 58], allow
for practical applications in the case of program verification. Most theorem prover decision
procedures are based on the DPLL algorithm, developed by Davis, Putnam, Logemann, and
Loveland [29,59]. Contemporary decision procedures take advantage of SMT techniques, since
SMT builds on SAT solving techniques and offers a more expressive modeling language using
first-order logic [56, 58].

In the context of our framework, the theorem prover will be signaled by the algebra engine to
solve a path condition for a basic block where the pre- and postconditions have been calculated
by the algebra engine and translated into a model for the theorem prover to work with. Results

will be recorded for the symbolic engine to bias itself towards paths that have yet to be explored.

Our goal is to provide soundness to the path constraints we calculate in order to determine
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reachability and derive a set of path conditions we can use to reconstruct concrete inputs to

reach interesting paths of execution and observe program behavior.
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CHAPTER 4
Reasoning Over Native x86

Reasoning over the Intel native x86 instruction set presents a significant challenge but presents
some clear advantages. First, we do not have an intermediate language (IL), so we do not deal
with the potential for losing information in translation. Intermediate languages are certainly
useful as compiler front-ends use them when analyzing a piece of source code that gets passed
to the compiler back-end to generate machine code for a given target platform [26]. Traditional
approaches to symbolic analysis of binary code leverage aspects of the compilation process by
using facets of it to semantically approximate the reasoning of the binary code. In other words,
intermediate languages assist in the symbolic analysis process to approximate the decompilation

process of the binary code as close as possible to the original source code.

Indeed, researchers in the field gravitate toward ILs because they reduce semantic complexity
during analysis. Frameworks such as LLVM [22] have gained tremendous popularity because
of their usefulness in the compilation process. ILs have several applications. One example is
generating an intermediate representation (IR) of a piece of source code and performing code
transformations. This is a critical highlight when discussing interoperability since this means
compilers can be used across different OS platforms. By using an intermediate language that is
common among different compiler platforms, a piece of source code may have the semantics
retained and honored when the back-end compiler produces the machine code for a given target

platform.

As mentioned earlier, the advantages of using an IL are accompanied by some disadvantages.
The depth level of an IL is critical when dealing with machine dependence. For example, high
level ILs are used almost entirely in the earliest stages of the compilation process, or in prepro-
cessors before compilation [21]. In some ways, a high level IL can be thought of as a pseudocode
representation of source code before the actual source program is written [21]. A medium level
IL is generally designed to reflect the range of features in a set of source languages, but in a
language-independent manner. They are designed to be good bases for generating efficient ma-
chine code for at least one architecture [21]. With languages such as C/C++, medium-level ILs
are the de facto standard level since they are appropriate for most of the optimizations done in
compilers, such as common-subexpression elimination, code motion, and algebraic simplifica-

tion [21]. Low-level ILs often provide a nearly one-to-one mapping to target machine instruc-
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tions and can generally be considered architecture-dependent. The IRs derived from low-level
ILs allow maximal optimization to be performed on the intermediate code and in the final stages
of compilation to either expand intermediate-code instructions into code sequences or to com-
bine related ones into more powerful instructions [21]. There exists multi-level intermediate
languages that consider a piece of source code and the need to represent it at different levels
through the compilation process in order to best transform it into platform-dependent machine
code [21]. Regardless of level, intermediate languages are still approximating the semantics of
source code to binary code. This can lead to fidelity loss in the precision of expression when

trying to simplify the instruction semantics of an architecture such as the Intel ISA.

The expressiveness of an IL is dependent on how extensive its syntax is to express every in-
struction. It is generally thought that simplifying seemingly identical instructions makes sense.
However, when analyzing binary code such as the Intel instruction set, it is not possible since
operations and operands can vary in length, from one to twelve or more bytes. Using an IL to
simplify or encompass all mov instructions, for instance, may help abstract away some of the
need for precision but, using a catch-all instruction may lead to an over-approximation or im-
proper approximation of what may be a completely different instruction [53]. The precision of
any IL is subject to this problem. Our goal is to maintain the highest level of fidelity possible
when looking at an instruction by maintaining a contextual look at native x86 and do away with
an IL.

The types of transformations that can be done using an intermediate language are not as impor-
tant for binary code analysis as the expressiveness or the depth level of the IL, but it is important
to understand how compiler ILs perform transformations to understand why they can dilute the
fidelity of binary code. IL transformation algorithms consider the depth level and the expression
syntax that are part of the language design. The transformation described generally tend toward
the simplification of the source as it is being translated into machine code or the optimization of
the aforementioned code by reducing the complexity. For example, a level of optimization may
determine that converting certain arithmetic loop operations may be more efficient by either
converting the loop into a long sequence thereby eliminating the loop, converting the arithmetic
operation itself into another operation, or both. By the time the machine code has been gen-
erated, much of the code may not resemble the actual source code. If we were to analyze this
same optimized binary code, and translate it back into an intermediate language fit for analysis,
the semantics of this code would further have to be simplified, which could lead to a dilution

of fidelity. As it is, binary code analysis is difficult enough without having to work with lossy
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results. To that end, we maintain that an intermediate language is not a desirable “extra” step

we want to take when performing analysis something like malware, for example.

4.1 Developing Reasoning Over x86 Architecture

To begin developing the algebra we need to reason over the x86 instruction set, it needs to be
understood that there are different levels of program context we are trying to develop. Program
context is the representation of our state at different levels during execution and is the container
for all of our analysis information. Taking inspiration from Fahringer and Scholz [60], we need
to define what our program context is and how the different levels of context tie together. We

want to develop context at three levels:

1. At each instruction
2. At each basic block

3. Through the entire program during execution

We now need to understand how path conditions propagate in accordance with the x86 archi-
tecture and become path constraints. We understand that path constraint derivation will largely
be a product of our program context but will also require understanding the behavior of key

assembly-level operations and the mnemonics of the Intel ISA.

In this thesis, we limit our discussion to the following instruction categories:

Branching

Flag Setting
Arithmetic

e [ogic

Data Transfer

These instruction categories represent a base of common instructions that are regularly encoun-

tered for OS and library call operations.
Instruction categories that are considered outside the scope of this thesis include the following:

e Floating Point
o MMX
e Streaming Single Instruction, Multiple Data (SIMD) Extensions (SSE) [61]
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4.2 Establishing Semantics

Based on work by Reinbacher and Tseitin [53, 62], we begin with establishing the semantics
that will be used to derive our program context. Following this, we will apply these semantics
to a single line instruction, then lift these techniques up to a basic block level, and then finally
use the pre- and postconditions we have generated to describe the state of a program at a given

point in the program.

We have several ingredients that we will use to derive our instruction-level program context S,

based on [60]. We can define the program state as the following:

e The 32-bit address space a running process is allocated. This includes:
— Addressable memory locations
e The set of registers:
- eax
- ebx
- ecx
— edx
— edi
- esi
— esp
— ebp
— eip
e The set of segment registers that hold 16-bit selectors:
- cs
- ds
- ss
- es
- fs
- gs
e The 32-bit EFLAGS register (holds status flags):
— OF (bit 11)—Overflow Flag
— SF (bit 7)—Sign Flag
— ZF (bit 6)—Zero Flag
— AF (bit 4)—Adjust Flag
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— PC (bit 2)—Parity Flag
— CF (bit 0)—Carry Flag
e Static Single Assignment (SSA) Form Variables [21, 63]

The SSA variables have the property that each variable is assigned exactly once during the anal-
ysis of a program. This provides the advantage of being able to distinctly verify every variable
that is created during analysis. Since there is no variable reuse, it is possible to determine which

variables were used during a back or forward trace of an execution path [21,53].

Next, we will formulate the algebra that mathematically describes instruction state, basic block

state, and program state.

4.2.1 Instruction Encoding
With the established semantics, we can proceed to transform each instruction, based on work
by Reinbacher and Tseitin [53, 58, 62].

Definition: Instruction Encoding

A single instruction encoding is described as a mnemonic M followed by its one or two
operands.

n—1
H M ﬁ [7 (X] ]] = (Smem_addr \ {ﬁ}) U {ﬁ/} = /\ Operationmem_addr 4.1)
i=0
where:
® Suem_adar 15 the set that describes the program context upon entrance of the instruc-
tion.

e « and f are operands. 3 can be considered the destination and o can be considered
the source to stay consistent with Intel-style semantics.

o (Smem adar \{B})U{B'} is the set difference subtracting § from the set and adding

B’ to the set. This describes the derived program state as a result of the instruction’s

operation.

/\ represents the conjunction of Tseitin-encoded clauses.

i s the bit counter.

n represents the number of bits for the operand.

operationem_qqqr 18 the instruction operation that is derived from the Intel ISA.

Figure 4.1: Instruction Encoding Definition

As an example, if we wanted to express an add operation over arbitrary values a and b at some
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arbitrary memory address, say, Oxbffffdc0, we would express it as follows:

n—1
[[ADD a,b ]| := (Sowysrraco \{a})U{a’} = A (a, « a+b) *2)
i=0

where a’ is the result upon exit of the completed instruction.

Single operand expressions, such as an inc operation, over an arbitrary value ¢ at some memory

location (we will re-use Oxbffffdc0) can be expressed as follows:

n—1
[[ INCCH = (SOxbfffdeO\{c})U{c,} = /\ (C/ — C+1) 4.3)
i=0

For bitwise operations, such as an xor operation at memory location bffffdc0, we would ex-

press it as follows:

n—1

[ XOR d,e]] == (Soussrraco \ {d}) U{d'} = A\ (d’[i] & dli @ em) (4.4)
i=0

Similar instruction encodings can be derived for the entire Intel ISA. As each instruction is
encoded in this set and bitwise fashion, we can extend it to the basic block level by constructing
a basic block formula ¢ that is a conjunction of all the instruction contexts within that given

block. This can be generically represented as follows:

4.2.2 Basic Block Encoding
Consider a generic basic block of n instructions. We can say that the resulting output from an
instruction /; is state S;y that will be used as input to instruction /; 1. Figure 4.2 describes this

calculation process:

Equations (4.5) and (4.6) describe how to mathematically describe basic block state with respect

to the instructions contained in a basic block.

This can be elaborated further by showing the set operations between each instruction as shown

in Figure 4.4.
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Iy = [[ Mo Bo, o0 ]] =S¢
I =[[M;B,00]]=8;
L=[[M;B,0]=S;

Ino1=[[Mu—1 Bu—1,0-1]] =Sa = Wi

Figure 4.2: Generic Basic Block of n Instructions

Definition: Basic Block Encoding

The resulting state derived by the n” instruction operation provides the final state for the
basic block indicated by S, adqr and can be written as the following sequence:

n—1
vbb = /\ [M; B, ai]] 4.5)
i=0
where:
e /\ denotes a sequence of instruction that results in the final state computed from the
n' instruction, I, .
e The computation to derive S; is derived from Equation (4.1).
and can be re-written with the set operation from Equation (4.1) as follows:

n—1

v = [\ (S\{Bi}HU{B"} (4.6)

i=0

Figure 4.3: Basic Block Encoding Definition

Ip = [[Mo Bo, oo ]] := (So\ {Bo}) U{B'o} =1
I = [[M; Br,on ]] == (St \{B1}) U{B'1} =S
L =M B0 :=(S2\{B})U{B’5} =Ss

L1 =My Bo1,1]]:= (Sp1 \ {Bn-1})U {ﬁ,n—l} =Sn = Vi

Figure 4.4: Basic Block of Instructions with Set Difference Break Out
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4.2.3 Program Path Encoding

Raising our semantics up to the program level presents issues we must now strongly consider.
One of the primary concerns is how to maintain state at instructions that create branching. When
a program branches, there are at least two paths that the program can take during execution. For

example, consider Figure 4.5

; Attributes: bp-based frame

public main
main proc near

arg 0= dword ptr 8

push abp

mowv ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov eax, [ebptarg 0]
mowv [esp+1Ch], eax
emp dword ptr [esp+lCh], 9
ja short loc BO4B83D9
T T
h J Y
il s B il s B
mov dword ptr [esp], offset s ; "Hellol'
call _puts loc_80483D9: ; "Goodbyel
jmp short loc BO483ES mov dword ptr [esp], ocffset aGoodbye
call _puts

Yy
=

[

loc_B0483ES:
mov eax, 0
leave

retn

main endp

Figure 4.5: A Simple C Program with Branching (Taken from IDA Pro)

For a particular path py, the values contained in our program state will change and be different
from the state that they will be in p;. Using the example above, we can see that in order for the
program to print out “Hello!”, the user-supplied input must contain between 0 and 8 arguments,
since the name of the program being executed is also part of the argument vector, which adds 1
argument. The program outputs “Goodbye” for any other argument count (anything that is not

between 0 and 9 total arguments).

Up until the state reaches the instruction 0x080483c9: ja short 1o0_80483D9, our basic
block state—and our program state up to this point of ‘execution—will be a result from the out-

put derived from not the compare instruction, 0x080483c4: cmp dword ptr [esp+1Ch], 9,
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but rather the data transfer instruction, 0x080483c0: mov [esp+1Ch], eax. Once the ja in-
struction has executed, then we can determine that there is a conditional branch which can be
traced back to the cmp instruction which compared the argument count with the value “9”. This
means that there are two distinct paths that can be taken, one we will call py, which corresponds
to the path that reaches the “Hello!” statement. The second path we call p;, which corresponds
to the path that reaches the “Goodbye!” statement.

To maintain simplicity in this example, we will only look at a small set of values within our state
that we will call S5 to correspond to line 6 of the instructions in Figure 4.5, mov [esp+1Ch], 9.
We can see that register eax is what contains the value of the argument count that is user-
influenced. From here, we can see that the data transfer that takes place is the value from eax is
copied to esp+1Ch which corresponds to a 28 byte displacement from where the stack pointer
esp currently points. The value at that memory location is compared to see if it is greater than
the value of 9. If it is, then it jumps to the basic block that would print “Goodbye!”. If the
value is less than 9, then it prints out “Hello!”. We can deduce that the state differences are the

following:

e For path py, the state value for eax must be between 0 and 9 in order for this path to be
executed.

e For path p;, the state value for eax must be anything that is not between 0 and 9 for this
path to be executed.

In order to mathematically represent the contextual differences between the respective state for
paths pp and p;, we introduce the symbol ¢ which is a function of the sequence of traversed
basic blocks, and therefore, all the instruction that were evaluated to reach their respective points

of execution.

For the example above, our states prior to the conditional ja instruction would look like the
following if 3 user-supplied arguments were supplied to the program for path py and if /10 user-

supplied arguments were supplied to the program for path path p;34:

3Note 1: Since the other registers have not been used thus far, they are zeroed out.
“Note 2: The stack, base, and instruction pointer addresses illustrated here are not reflective of what they may
be in our analysis framework.
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by = { lebp+ 018 fesp +0v1],

{eax = 0x4,ebx = 0,ecx = 0,edx = 0,edi = 0,esi = 0,
ebp = O0xbffffd6c,esp =0xbffffd40,eip = 0x080483¢9},
{cs = 0x73,ds = 0x7b,ss = 0x7b,es = 0xTb, fs = 0,gs = 0x33},

{of=0,sf=1,zf=0,af =1,pf =0,cf = 1},{@}}

Op, = {{[ebp +0x8], [esp + Ox1c]},

{eax = 0xb,ebx = 0,ecx = 0,edx = 0,edi = 0,esi = 0,
ebp = O0xbf fffd6c,esp = 0xbffffd40,eip = 0x080483¢9},
{cs = 0x73,ds = 0x7b,ss = 0x7b,es = 0xTb, fs = 0,gs = 0x33},

{0 =057 =0.27 0,07 =0.p = 0./ =0}, (0}

As can be seen in the example, slight variations in the state can result in radically different

outcomes with path execution.

In order to precisely describe the state mathematically, we see that we first need to consider
the basic blocks that have been traversed. Second, we can see that we also need to evaluate
each instruction contained in each basic block. Third, we need to keep track of the state change
between each instruction. Our semantics sufficiently capture all of this information, allowing us

to come up with a general equation that accurately describes this, as seen in Figure 4.6
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Definition: Program Path Encoding

The overall state of a program can be computed given a particular path of execution p that
is followed. This can be defined as the following:

m—1
o=\ ¥ @.7)
Jj=0
where:
e p is a path of execution that is being inspected.
e jis the block counter
e m is the number of blocks in path p
e y; is computed from Equation (4.5).
If we expand y; in Equation (4.7) using Equation (4.5) and Equation (4.6), we will have:

m—1
o= /\ ¥ (4.8)
j=0

= m/_\1 (”/_\1 [[M; ﬁiyai]]>j (4.9)

j=0 \i=0

m—1 ,n—1
= A (/\ (Si\{ﬁi})u{ﬁli}). (4.10)

j=0 \i=0

where both A respectively represent a sequence of computations that result in the program
state up to the point of path p’s execution.

Figure 4.6: Program Path Encoding Definition

4.3 Applying the Math: A Worked Example

We have established an algebra for mathematically describing the state of a code under execu-

tion at the instruction, basic block, and program level with respect to a path of execution. We

can now demonstrate the use of it with an example.

Expanding on our simple-branch example, we will analyze loop-branch, a program that will

output “Hello!” or “Goodbye!”, depending on the number of arguments given, just like simple-
branch. Specifically, if the number of total arguments is between 0 and 9, then the program
will output “Hello!”. If the argument count is anything outside of that count, then it will output

“Goodbye!”. However, the additional function of the program is that it will also output all
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arguments contained in the argument vector. Figure 4.7 shows two examples of program output.

1# ./loop-branch a b c d e

Hello! argv[0] = ./loop-branch
Hello! argv[1] =
Hello! argv[2]
Hello! argv([3] =
Hello! argv([4]
Hello! argv[5]

|
® Q0 0P

J# ./loop-branch 1 2 34567 89 10
Goodbye! argv[0] = ./loop-branch

Goodbye! argv[1] =
Goodbye! argv[2] =
Goodbye! argv[3] =
Goodbye! argv[4] =
Goodbye! argv[5] =
Goodbye! argv[6] =
Goodbye! argv[7] =
Goodbye! argv[8] =
Goodbye! argv[9] =
Goodbye! argv[10] = 10

© 00 N O WN =

Figure 4.7: loop-branch Output Example

To begin analysis, consider the CFG of loop-branch showing in Figure 4.8. The numbers in cir-
cles correspond to the assigned basic block number and basic block code that will be referenced

during analysis.
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# Attributes: bp-based frame

public main
main proc near

arg O= dword ptr 8
arg_4= dword pkr OCh

push  ebp

mov ebp, es
and esp, OFFFFFFFOhL
sub esp, 20h
mov édword ptr [esp+iCh], O
cmp [ebp+arg 0], O
js short loc BO4B420
L J
s =3
cmp [ebptarg 0], 9
@ ig short loc_B048420
L i,
] = k
mov dword ptr [esptlCh], O
Jmp short loc HO04B415 loc_B048420:
mov dword ptr [esp+lCh], O
Jmp short loc_ 8048454
]
loc_BO4B415: loc_8048454:
mov eax, [esp+lCh] mov eax, [esp+lCh]
cmp eax, [ebptarg 0] cmp eax, [ebptarg 0]
j1 short loc BO4BIEE il short loc BO4B42R
Y Y
[a = | [w <= "
|jmp short 1ocfao4aasn|
loc_B0483EB: loc_B804B42A:
mov eax, [esp+lCh] mov eax, [esp+lCh]
shl eax, 2 shl eax, 2
add eax, [ebptarg 4] add eax, [ebptarg 4]
mov edx, [eax] mov adx, [eax]
mov eax, offset format ; "Hello! argv(id] = %s\n mov eax, offset aGoodbyeArgvD8 ; "Goodbye! argv[id] = is\n
mov [esp+8], edx mov [esp+8], edx
mov edx, [esp+l1Ch] mov edx, [esp+1Ch]
mov [espti], edx mov [esp+4], edx
mov [esp], eax ; format mov [esp], eax ; format
call _printf call _printf
add dword ptr [esp+lCh], 1 add dword ptr [esp+lCh], 1
|

A i
[ =)
loc_B04B45D:
mov eax, 0
leave
retn

main endp

Figure 4.8: CFG of Program loop-branch (Taken from IDA Pro)

We can consider an initial state that the program’s memory space will take on at the program’s
“main” function. For the sake of brevity, we will analyze one full basic block of instructiond
starting at Basic Block O (Figure 4.9) and gradually raise up the mathematical analysis. In
implementation, our analysis framework will analyze each instruction. Also, paths that may not

be reachable will be briefly discussed but not analyzed in-depth.
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4.3.1 Mathematical Analysis of loop-branch

Beginning with Basic Block 0 (Figure 4.9), we have an initial state to consider. With some

stack offset that occurs when the process is “loaded” into memory, as well the pre-loading

activities that occurred for our program to get to main, let’s assume esp is pointing to address
Oxbffff7£8 and eip is pointing at 11. 0x080483c4: push ebp, which corresponds to line
11 of Basic Block 0..

.text

[ IS T N I VU SR

.text
.text

I35 FE 50 =5 v

.text:
:080483C4
.text:
.text:
.text:
.text:
.text:
:080483C4
:080483C4
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:

080483C4

080483C4
080483C4
080483C4
080483C4
080483C4

080483C4
080483C4
080483C5
080483C7
080483CA
080483CD
080483D5
080483D9

; =============== SUBROUTINE
; Attributes: bp-based frame

public main
main proc near ; DATA XREF: _start+17o
arg_0O = dword ptr 8
arg_4 = dword ptr OCh

push ebp

mov ebp, esp

and esp, OFFFFFFFOh

sub esp, 20h

mov dword ptr [esp+1Ch], O

cmp [ebptarg_0], O

js short loc_8048420

Figure 4.9: loop-branch Basic Block 0 (Taken from IDA Pro)

Our initial state, with our assumptions, will look like the Figure 4.10.

Oinitial = {{(Z)}, {eax = 0,ebx = 0,ecx = 0,edx = 0x8,edi = 0,esi = 0,

ebp = 0xbffff748,esp = Oxbffff6cc,eip = 0x080483c4},
{cs = 0x73,ds = 0x7b,ss = 0xTb,es = 0xTb, fs = 0x0, gs = 0x33},

{of=0,5f=0,zf =1af =0,pf = 1,Cf=0}7{@}}

Figure 4.10: Initial loop-branch Program State

Here, ¢;,ii; means we are at the initial state of the program, which can be lowered down to the

basic block, and therefore, the instruction level, where S; contains same initial state values.

From here, if we execute push ebp, then we would observe the following as seen in Figure 4.11.

Note that push ebp is encoded in a manner that affects esp, since the push operand decrements

the stack pointer and then stores the source operand on top of the stack [61]:
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Ip=[[PUSH ebp |] := (Sox080483c4 \ {esp}) U {esp’'} = Sor080483c5
n—1

- /:\0 ([esp/ < (esp' =esp—4) A (temp=ebp) N ([esp'] =temp)D

Figure 4.11: push ebp Instruction Encoding

Following this instruction, we can encode the succeeding instruction in a similar fashion. Fig-

ure 4.12 shows the instruction encodings for Basic Block 0.

After finishing the analysis of Basic Block 0, we can see that the state at Scyp 1s interesting as
the state here is what is compared in the next instruction and determines the branching. From our
vantage point, we already know that we are approaching a branch in our analysis of the code
under test. However, in implementation, our engine will not necessarily have our omniscient
view since it is performing just-in-time symbolic execution. Therefore, we introduce a state
called Sipranca: so that the engine will know that it has reached a branching instruction. All
conditional and unconditional jumps will automatically receive this state so that it knows it has

reached an instruction that produces a branch.

With the cmp instruction, we can determine the values that determine the branch condition. In
Basic Block 0 (Figure 4.9), we can see that the two values being compared are the contents of
a memory address and the value 0. Based on the operation of the cmp instruction, we know that
the operation will set any of the EFLAGS based on the result. The js instruction following the
cmp instruction indicates that the sign flag (SF) is checked to see if it is set to value 1, indicating
that the result from the cmp instruction was in a negative number. Therefore, we know that if the
result is negative, then a conditional jump will be taken to Basic Block 3 (Figure 4.14). However,

if the result is not negative, then execution will continue to Basic Block 1 (Figure 4.13).
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Ip={[[ ebp]] := (Soxos04s3c4 \ {esp}) U{esp'} = Soxos0483cs

n—1

= /\ <esp' < (esp' =esp—4) A (templ = ebp) A ([esp] :templ))
i=0
I, = [[ MOV ebp,esp || := (Sox080483¢c5 \ {€bp}) U{ebp'} = Sox080483c7
n—1
= A (ebp’ < ebp’ :esp)
i=0
I, = [[ AND esp, Oxfffffff0 || := (Soxos0483c7 \ {esp}) U{esp’} = Sox080483ca
n—1
= N\ (esv' > [temp2 =001 17777100) 1 (esp] & rempi)|
i=0

I3 = [[ SUB esp,0x20 || := (Sox080483ca \ {€sP}) U{esp'} = Sox080483ca

n—1

= A (esp’ YRS esp—OxZO)

i=0

I4 = [[ MOV dword ptr [esp + 0x1C],0 |]
:= (Sox080483¢d \ {dword ptr [esp +0x1C]}) U {(dword ptr [esp +0x1C])'} = Sox080483d5

n—1

= /\ <(dw0rd ptr [esp +1C]) < (dword ptr [esp+1C] = O))
i=0
Is = [[ CMP [ebp +8],0 ]] := (So.08048345 \ {temp3}) U {temp3'} = So08048349
n—1
= /\ (temp3’ “ (([ebp+8]—0) A (moa’ify(EFLAGS))))
i=0
Is = [[ JS 0x08048420 || := (Sox08048349 \ {temp4}) U {tempd'} = Sigranch!
n—1
= /\ <temp4' “ ((SF == 1) A (temp4 = eip + 0x08048420) A (eip = temp4)))
i=0

Figure 4.12: Instruction Encodings for Basic Block 0
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1 .text:080483DB cmp [ebptarg_0], 9
2 .text:080483DF jg short loc_8048420

Figure 4.13: loop-branch Basic Block 1 (Taken from IDA Pro)

1 .text:08048420

2 .text:08048420 loc_8048420: ; CODE XREF: main+15j
3 .text:08048420 ; main+1Bj

4 .text:08048420 mov dword ptr [esp+1Ch], O

5 .text:08048428 jmp short loc_8048454

Figure 4.14: loop-branch Basic Block 3 (Taken from IDA Pro)

Based on this analysis, we know what the two possible basic block states are to reach Basic
Block 1 or Basic Block 3, and thus, the two possible program states as shown in Figure 4.15
and Figure 4.16.

V/l?bO = ‘P;(v)o - {{[ebP+OX8] > 0,[esp+0xlc] =0},

{eax = 0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi = 0,

ebp =0xbffff6c8,esp =0xbffff6a0,eip =0x080483db},

{cs =0x73,ds = 0x7b,ss = 0x7b,es = 0xTb, fs = 0x0, gs = 0x33},
{of =0,sf=0,zf =0,af =0,pf =0,cf =0},

{templ = ebp,temp2 = Oxfffffff0,temp3 = [ebp+8] -0,

temp4d = eip + 0x080483db}}

Figure 4.15: State that causes Basic Block 0 to Branch to Basic Block 1
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Wi = 0 = { (lbp + 0] <0, fesp + 0wt =0},

{eax =0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi =0,

ebp = O0xbffff6c8,esp = O0xbf fff6a0,eip = 0x08048420},

{cs = 0x73,ds = 0x7b,ss = OxTb,es = Ox7b, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af =0,pf =0,cf =0},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] —0,

temp4 = eip +0x08048420} }

Figure 4.16: State that causes Basic Block 0 to Branch to Basic Block 3

Continuing the analysis at the basic block level, we will see that Basic Block 3 (Figure 4.14)
is a basic block that acts as a lead-in for Basic Block 5 (Figure 4.17), a basic block that either
branches to the end of the program for exiting, or branches to Basic Block 8 (Figure 4.28). This
is important to note as Basic Block 5 and Basic Block 4 (which has not yet been discussed) are
both basic blocks that act as loop counters for outputting the argument vectors that are user-
supplied at the start of the program. In order to reach Basic Block 3, and subsequently Basic
Blocks 5 and 8, the sign flag (SF) needs to be set in order to perform the jump from Basic Block
0 to Basic Block 3. This means that there needs to be either a negative number of inputs or
enough inputs that cause an integer overflow of the argument count. Whether this is actually
possible or not is beyond the scope of this thesis, but we will discuss executing down a feasible

path that outputs “Hello!” with an argument vector that is a count between 0 and 9.

1 .text:08048454 loc_8048454: ; CODE XREF: main+64j
2 .text:08048454 mov eax, [esp+1Ch]

3 .text:08048458 cmp eax, [ebpt+arg_0]

4 .text:0804845B jl short loc_804842A

5 .text:0804845D

Figure 4.17: loop-branch Basic Block 5 (Taken from IDA Pro)
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Going back to the branching at the exit of Basic Block 0, we’ve noted that Basic Block 0
can branch to Basic Block 1 if the output is positive since Scyp would subsequently have
the sign flag set to SF == 0. Analyzing this path of execution will result in yp,; after the
line 1. 0x080483db: cmp [ebp+8], 9 instruction to yield the state shown in Figure 4.18.

Vo = {{[ebp +0x8] > 0, [esp + Ox1c] = 0},

{eax =0,ebx =0,ecx = 0,edx = 0,edi = 0,esi = 0,

ebp = 0xbf fff6c8,esp = 0xbf fff6a0,eip = 0x080483df},

{cs = 0x73,ds = 0x7b,ss = OxTb,es = Ox7b, fs = 0x0, gs = 0x33},
{of=0,sf=1,zf =0,af =1,pf =1l,cf =1},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] —0,

temp4d = eip + 0x080483e9}}
Figure 4.18: State at Basic Block 1 Entrance

With our assumption that our input is between 0 and 9 arguments, we will see that execution of
this path will continue to Basic Block 2 (Figure 4.19), then Basic Block 4 (Figure 4.20).

1 .text:080483E1 mov dword ptr [esp+1Ch], O
2 .text:080483E9 jmp short loc_8048415

Figure 4.19: loop-branch Basic Block 2 (Taken from IDA Pro)

1 .text:08048415 loc_8048415: ; CODE XREF: main+25j
2 .text:08048415 mov eax, [esp+1Ch]

3 .text:08048419 cmp eax, [ebptarg_0]

4 .text:0804841C jl short loc_80483EB

Figure 4.20: loop-branch Basic Block 4 (Taken from IDA Pro)
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To reach Basic Blocks 2 and 4, their respective states would be as shown in Figure 4.21, and
Figure 4.22.

vy = {{([ebp +0x8] > 0) A ([ebp +0x8] < 9), [esp +0x1c] =0},

{eax = 0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi = 0,

ebp = O0xbf fff6c8,esp = 0xbf fff6a0,eip = 0x080483¢1},

{cs =0x73,ds = 0x7b,ss = 0x7b,es = 0xTb, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af =1,pf = 1l,cf =1},

{templ = ebp,temp2 = Oxfffffff0,temp3 = [ebp+ 8] —0,

temp4d = eip + 0x08048420,tempS = eip + Ox08048420}}

Figure 4.21: State at Basic Block 2 Entrance

ngM = {{([ebp—{—OxS] > 0) A ([ebp+0x8] <9),[esp+ Oxlc] =0},

{eax =0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi = 0,

ebp =0xbffff6c8,esp=0xbffff6a0,eip = 0x08048415},

{cs =0x73,ds = 0x7Tb, ss = 0x7b,es = 0xTb, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af = 1,pf = l,cf =1},

{templ = ebp,temp2 = Oxfffffff0,temp3 = [ebp+ 8] — 0,

temp4 = eip + 0x08048420,temp5 = eip 4+ 0x08048420,temp6 = eip + 0x08048415} }

Figure 4.22: State at Basic Block 4 Entrance
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Since our assumption up to this point has been that we have an input between 0 and 9 arguments,
we will have reached Basic Block 7 (Figure 4.23). State Y6, and therefore ¢, at the entrance
of Basic Block 7 will be as shown in Figure 4.24.

1 .text:080483EB

2 .text:080483EB loc_80483EB: ; CODE XREF: main+58j
3 .text:080483EB mov eax, [esp+1Ch]

4 .text:080483EF shl eax, 2

5 .text:080483F2 add eax, [ebptarg_4]

6 .text:080483F5 mov edx, [eax]

7 .text:080483F7 mov eax, offset format ; "Hello! argv([’d] = %s\n"
8 .text:080483FC mov [esp+8], edx

9 .text:08048400 mov edx, [esp+1Ch]

10 .text:08048404 mov [esp+4], edx

11 .text:08048408 mov [esp]l, eax ; format

12 .text:0804840B call _printf

13 .text:08048410 add dword ptr [esp+1Ch], 1

14 .text:08048415

Figure 4.23: loop-branch Basic Block 7 (Taken from IDA Pro)

ll/ll7bb7 = {{([ebp+0x8] > 0) A ([ebp+0x8] <9),[esp+ Oxlc] =0},

{eax =0,ebx =0,ecx = 0,edx = 0,edi = 0,esi = 0,

ebp = 0xbffff6c8,esp = 0xbf fff6a0,eip = 0x080483eb},

{cs =0x73,ds = 0x7b,ss = 0x7b,es = 0x7Tb, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af =1,pf =1l,cf =1},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] —0,
temp4d = eip + 0x08048420,tempS = eip + 0x08048420,

temp6 = eip + 0x080483eb} }

Figure 4.24: State at Basic Block 7 Entrance

From here, we will see that it enters a loop. Detecting loop invariants is beyond the scope of
this thesis but at the end of the looping, we can observe the state at the entrance of Basic Block
6 (Figure 4.25) will be as shown in Figure 4.26. We observe that this is the basic block that will
output “Hello!” and the argument vector line-by-line per the conditions set when user input was

provided.
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1 .text:0804841E jmp short loc_804845D

Figure 4.25: loop-branch Basic Block 6 (Taken from IDA Pro)

Vbbe = l},lg”o = {{([ebp+0x8] > 0) A ([ebp+0x8] <9),[esp+ Oxlc] = [ebp+ 0x8],

{eax € 0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi =0,

ebp = O0xbffff6c8,esp = O0xbf fff6a0,eip = 0x080481eb},

{cs = 0x73,ds = 0x7b,ss = 0x7b,es = 0x7Tb, fs = 0x0, gs = 0x33},
{of =0,sf=0,zf =1,af =0,pf = 1,cf =0},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] — 0,
temp4 = eip + 0x08048420,tempS = eip + 0x08048420,

temp6 = eip + 0x080483eb} }

Figure 4.26: State at Basic Block 6 Entrance

From here, an uncondtional jump to Basic Block 9 (Figure 4.27) will take place which will lead

the program to exit normally.

1 .text:0804845D loc_804845D: ; CODE XREF: main+5Aj
2 .text:0804845D mov eax, O

3 .text:08048462 leave

4 .text:08048463 retn

5 .text:08048463 main endp

Figure 4.27: loop-branch Basic Block 9 (Taken from IDA Pro)
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We have just shown an analysis of execution path p where the user input is between 0 and 9

arguments. A similar analysis would follow where the user supplies any positive input count

greater than 9. The difference in state output when it enters Basic Block 8 (Figure 4.28) is

shown in Figure 4.29
1 .text:0804842A
2 .text:0804842A loc_804842A: ; CODE XREF: main+97j
3 .text:0804842A mov eax, [esp+1Ch]
4 .text:0804842E shl eax, 2
5 .text:08048431 add eax, [ebptarg_4]
6 .text:08048434 mov edx, [eax]
7 .text:08048436 mov eax, offset aGoodbyeArgvDS ; "Goodbye! argv[/d]l = %s\n'
8 .text:0804843B mov [esp+8], edx
9 .text:0804843F mov edx, [esp+1Ch]
10 .text:08048443 mov [esp+4], edx
11 .text:08048447 mov [esp]l, eax ; format
12 .text:0804844A call _printf
13 .text:0804844F add dword ptr [esp+1Ch], 1
14 .text:08048454
Figure 4.28: loop-branch Basic Block 8 (Taken from IDA Pro)
Yhbg = ,§§°dbye = {{([ebp+0x8] < 0)A([ebp+0x8] >9),[esp+ Oxlc] =0},

{eax € 0,ebx = 0,ecx = 0,edx ¢ 0:9,edi = 0,esi = 0,

ebp = Oxbf fff6b8,esp = 0xbffff690,eip = 0x0804842a},

{cs =0x73,ds = 0x7b,ss = 0x7b,es = 0x7Tb, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af = 1,pf =1l,cf =1},

{templ = ebp,temp2 = Oxfffffff0,temp3 = [ebp+8] -0,
temp4 = eip + 0x08048420,tempS = eip + 0x08048454,

temp6 = eip + 0x0804842a} }

Figure 4.29: State at Basic Block 8 Entrance At Beginning of Loop
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4.3.2 Applying Algebraic Semantics to Theorem Proving

We now take the manual analysis above and discuss what should be done to transform it and
input it into a theorem prover, such as an SMT or SAT Solver [56]. It is difficult to explicitly
describe all the differences between SMT and SAT solvers as the driving theories are inter-
twined. A rough description for the differences between the two would be analogous to describ-
ing the differences between a higher-level programming language such as C and lower-level
programming language such as x86 Assembly. SMT can be considered to be built on top of
SAT, where SMT utilizes first-order logic [64,65] to provide a richer language to describe CNF
formulas [66—68]. Early attempts to utilize SMT instances involved eager encoding the SMT
statements to Boolean SAT statements, otherwise known as bit-blasting [69]. In many ways,

this is analogous to converting C program source code into an assembly listing.

There are advantages and disadvantages to this bit-blasting SMT to SAT. When bit-blasted into
Boolean SAT instances, the formulas can be solved by existing SAT solvers without modi-
fication. However, since we are going from a higher level language—in this case, first-order
logic—to a lower level language, the higher-level semantics of the first-order logic are lost. In
this case, the SAT Solver has more reasoning to perform since some of the high-level semantics
that seem axiomatically obvious now have to be explicitly stated. One example would be com-
mutative and transitive properties in arithmetic. If we had a formula such as Figure 4.30 and
eagerly big-blasted the formula into Boolean SAT, the SAT solver would have to “work harder”

to verify the commutative and transitive properties of the formula.

x=y&&y=x&&y=7&&z7=x
Figure 4.30: First-Order Logic Example 1

On the other hand, with SMT, we can use axiomatic statements to enforce the commutative and
transitive properties without having the SMT solver work to try to verify them since we have

postulated that the properties simply hold. Figure 4.31 shows an example of this.

\forall x,y,z. x=y&& y=x&& y=7&& 7=x
Figure 4.31: First-Order Logic Example 2—Axiomatic Enforcement

To begin, we must observe that our framework currently utilizes just-in-time symbolic execu-
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tion as described in Chapter 3. That is, the symbolic execution engine does not have apriori
knowledge of the binary code under test other than what it knows from loading the program

into memory. From here, we must encode the initial state of the program.

It may be necessary to encode the state of every instruction to retain stateful history of all
instructions executed for granular debugging of a program. However, it may only be necessary
to generate SMT formulas that test and asserts a subset of constraints that will help us determine
a property of execution flow. It is our contention that we want the theorem prover to look at
instructions that perform “conditional” tests. For instance, if our emulation engine retrieves a
test or cmp instruction, we want to determine the state from that instruction and then use the

state to encode what needs to be tested.

While other analyses are important, such as properly identifying basic blocks, identifying loops,
and determining value ranges, these are “big-picture” issues that the emulation engine will
handle with control flow and data flow analysis. As discussed in Section 4.3, we observed that
we were able to go down two major paths of execution as shown in Figure 4.8. This indicates
that there were at least two paths of execution to traverse. This means that at least two execution
traces can be made for loop-branch. Each trace, up to some point of execution, will be encoded
into SMT/SAT compatible formulas [66—68] to determine path reachability.

For the purposes of the discussion in this section, we will focus on SMT encoding. Specifically,
we will be focusing on the SMT-LIB 2.0 standard [66].

Handling the analysis of binary code under test means that we will not be dealing with source
code as discussed. To that end, we will rely on logic dealing with bit-vectors and arrays. A
bit-vector is an array data structure of Boolean values of a given length [57]. This is relevant
since we are dealing with programs at the bit level and our reasoning of native x86 instructions
requires the ability to perform bit-wise operations. In general, we will use QF _AUFBYV logic in
SMT. When we refer to a logic in SMT, we are referring to the theories, functions, and symbols
that are associated with a logic. A theory, in the context of SMT solvers, defines a vocabulary of
sorts (otherwise known as data types) and functions, and it associates a sort (type) with relevant
literals. QF _AUFBYV, in this context, refers to Quantifier-Free with Arrays, Uninterpreted
Functions, and Bit-Vectors [67, 68], which allows quantifier-free expressions, including the
family of bit-vector sorts and functions associated with fixed size bit-vector theory, arrays, ar-

bitrary sorts with uninterpreted functions, and associated function symbols [68].
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Revisiting our loop-branch example, let us begin a discussion of what are relevant points to call

the theorem prover. In Section 4.3, a special state was introduced—S\prancH1—to indicate a

jump target or unconditional jump. This state was explicitly defined in order to indicate when a

branch would occur. We will focus on Basic Block 0 (Figure 4.32).

.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C4
.text:080483C5
.text:080483C7
.text:080483CA
.text:080483CD
.text:080483D5
.text:080483D9

[ IS N I VU SR

I35 FE 50 =5 v

; =============== SUBROUTINE
; Attributes: bp-based frame

public main
main proc near ; DATA XREF: _start+17o

arg_O

arg_4

push
mov
and
sub
mov
cmp
js

dword ptr 8
dword ptr OCh

ebp

ebp, esp

esp, OFFFFFFFOh

esp, 20h

dword ptr [esp+1Ch], O
[ebptarg_0], O

short loc_8048420

Figure 4.32: loop-branch Basic Block 0 (Taken from IDA Pro)

We have mathematically represented the instruction encoding for each instruction that allowed

the program counter to reach the 0x080483d9: js short loc_8048420 instruction. We have

further represented the states that are reachable when the branch is taken and when the branch

is not taken, as shown in Figure 4.33 and Figure 4.34.

Vo = 05, = { Uebp + 048] = 0.esp + 0x1] =0},

{eax =0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi =0,

ebp = 0xbffff6c8,esp = 0xbf fff6a0,eip = 0x080483db},

{cs = 0x73,ds = 0x7b,ss = 0x7b,es = 0x7Tb, fs = 0x0, gs = 0x33},
{of =0,sf=0,zf =0,af =0,pf =0,cf =0},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] —0,

temp4 = eip + 0x080483db}}

Figure 4.33: State that causes Basic Block 0 to Branch to Basic Block 1
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Wi = 0 = { (lbp + 0] <0, fesp + 0wt =0},

{eax =0,ebx = 0,ecx = 0,edx = 0,edi = 0,esi =0,

ebp = O0xbffff6c8,esp = O0xbf fff6a0,eip = 0x08048420},

{cs = 0x73,ds = 0x7b,ss = OxTb,es = Ox7b, fs = 0x0, gs = 0x33},
{of =0,sf=1,zf =0,af =0,pf =0,cf =0},

{templ = ebp,temp2 = OxfffffffO,temp3 = [ebp+ 8] —0,

temp4 = eip +0x08048420} }

Figure 4.34: State that causes Basic Block 0 to Branch to Basic Block 3

We can represent the registers as 32-bit data structures. In SMT-LIB, they would be represented
with the bit-vector sort (_ BitVec 32). The generic statement for a bit-vector of arbitrary
length n is (_ BitVec n), which allows us to specify bit-vectors of other sizes. Bit-vector
literals can also be defined using binary, decimal, and hexadecimal notation. Since we are us-
ing hexadecimal representations for memory addressing, it makes sense to stay consistent. An
example of using hexadecimal notation would be #xbffff6c8 to represent the hexadecimal
address Oxbffff6c8.

Using our knowledge of SMT-LIB, we can proceed to encode the state in a meaningful manner.

The encodings are showing in Figure 4.35 and Figure 4.36.

For the purposes of illustrating how a theorem prover is utilized, assume that the total number of
user-supplied arguments was five. We would then be able to encode an SMT instance as shown

in Figure 4.35.
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; set logic to quantifier free with arrays,
; uninterpreted functions, and bit-vectors
(set-logic QF_AUFBV)

(define-fun eax () (_ BitVec 32) #x00000000)
(define-fun ebx () (_ BitVec 32) #x00000000)
(define-fun ecx () (_ BitVec 32) #x00000000)
9 (define-fun edx () (_ BitVec 32) #x00000000)
10 (define-fun edi () (_ BitVec 32) #x00000000)
11 (define-fun esi () (_ BitVec 32) #x00000000)
12 (define-fun ebp () (_ BitVec 32) #xbffff6c8)
13 (define-fun esp () (_ BitVec 32) #xbffff6a0)
14 (define-fun eip () (_ BitVec 32) #x080483db)
15 (define-fun cs () (_ BitVec 8) #x73)
16 (define-fun ds () (_ BitVec 8) #x7b)
17 (define-fun ss () (_ BitVec 8) #x7b)
18 (define-fun es () (_ BitVec 8) #x7b)
19 (define-fun fs () (_ BitVec 8) #x99)
20 (define-fun gs () (_ BitVec 8) #x33)
21 (define-fun of () (_ BitVec 4) #x0)
22 (define-fun sf () (_ BitVec 4) #x0)
(
(
(

1
2
3
4
5 ; declare variables
6
7
8

23 (define-fun zf () BitVec 4) #x0)

24 (define-fun af () BitVec 4) #x0)

25 (define-fun pf () BitVec 4) #x0)

26 (define-fun cf () (_ BitVec 4) #x0)

27 (define-fun templ () (_ BitVec 32) #x00000005) ;temp value for [ebp+0x8]=5

28 (define-fun temp2 () (_ BitVec 32) #x00000000) ;temp value for comparison value against [ebp+0x8]
29 (define-fun temp3 () (_ BitVec 32) #x00000000) ;temp value for [esp+Oxic]

30 (define-fun temp4 () (_ BitVec 32) #x00000000) ;temp value forcomparison value against [esp+Oxic]
31

32 ; test: (signed) templ >= temp2 && temp3 == temp4

33 (assert (and (bvsge templ temp2) (= temp3 temp4)))

34

35 ; instantiate smt solver

36 (check-sat)

Figure 4.35: SMT encoding of y),,
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If we managed to somehow pass a negative number of total arguments, then we would have an

SMT instance as shown in Figure 4.36. Assume -5 arguments were sent.

1 ; set logic to quantifier free with arrays,

2 ; uninterpreted functions, and bit-vectors

3 (set-logic QF_AUFBV)

4

5 ; declare variables

6 (define-fun eax () (_ BitVec 32) #x00000000)

7 (define-fun ebx () (_ BitVec 32) #x00000000)

8 (define-fun ecx () (_ BitVec 32) #x00000000)

9 (define-fun edx () (_ BitVec 32) #x00000000)

10 (define-fun edi () (_ BitVec 32) #x00000000)

11 (define-fun esi () (_ BitVec 32) #x00000000)

12 (define-fun ebp () (_ BitVec 32) #xbffff6c8)

13 (define-fun esp () (_ BitVec 32) #xbffff6a0)

14 (define-fun eip () (_ BitVec 32) #x08048420)

15 (define-fun cs () (_ BitVec 8) #x73)

16 (define-fun ds () (_ BitVec 8) #x7b)

17 (define-fun ss () (_ BitVec 8) #x7b)

18 (define-fun es () (_ BitVec 8) #x7b)

19 (define-fun fs () (_ BitVec 8) #x99)

20 (define-fun gs () (_ BitVec 8) #x33)

21 (define-fun of () (_ BitVec 4) #x0)

22 (define-fun sf () (_ BitVec 4) #x1)

23 (define-fun zf () (_ BitVec 4) #x0)

24 (define-fun af () (_ BitVec 4) #x0)

25 (define-fun pf () (_ BitVec 4) #x0)

26 (define-fun cf () (_ BitVec 4) #x0)

27 (define-fun templ () (_ BitVec 32) #xfffffffb) ;temp value for [ebp+0x8]=-5
28 (define-fun temp2 () (_ BitVec 32) #x00000000) ;temp value for comparison value against [ebp+0x8]
29 (define-fun temp3 () (_ BitVec 32) #x00000000) ;temp value for [esp+Oxic]
30 (define-fun temp4 () (_ BitVec 32) #x00000000) ;temp value forcomparison value against [esp+Oxic]
31

32 ; test: (signed) templ < temp2 && temp3 == tempd

33 (assert (and (bvslt templ temp2) (= temp3 temp4)))

34

35 ; instantiate smt solver

36 (check-sat)

Figure 4.36: SMT encoding of y,,

With these SMT instances, we could then verify our conditions held and we could then ask the
question of whether a given execution path is reachable or not. Despite the results produced by
a theorem prover, human interaction and logic must be used here. As we can see from the above
example, it is certainly logical that execution could branch from Basic Block 0 to Basic Block
3 if we pass a negative number of arguments. However, this may not be a feasible path to visit

since it is not possible to pass a negative number of arguments.
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CHAPTER 5:

Conclusions and Future Work

5.1 Conclusions and Discussions

This thesis asked the following question: Can an algebra be developed to mathematically de-
scribe the state of binary code during execution? Further, can this algebra describe program
state at the instruction level, basic block level, and the program level. To answer this question,
an algebra was indeed developed that would precisely describe program state as a program

executed.

We began by using Tseitin transformation principles to perform encoding at the instruction level
and describe the operation an Intel x86 instruction performs on its respective operands. This was
done using set theory to help mathematically describe the encoding to conjunctive normal form.

Additionally, we observed bit-wise operations that occur for the instructions.

We then expanded our state definition to the basic block level with the goal of describing the
state of execution at both the entrance and exit of a basic block. With our developed algebra, one
implicit byproduct was the capability of describing the state at any instruction within a basic
block. However, the main goal was to effectively mathematically model entrance and exit state

context to satisfy the objective of path reconstruction (will be discussed in future work).

Finally, we created a definition that modeled the overall program state based on our earlier
knowledge garnered from encoding each encountered instruction and each traversed basic block
respective to a particular execution path. The ability to distinguish unique execution paths is
critical to successful program analysis. Even simple programs can produce several paths of
execution, and subsequently many iterations of state, all of which must be explored for complete
and exhaustive code coverage. Unfortunately, this leads to the problem of state explosion (will

be discussed in future work).

With respect to developing an algebra that mathematically modeled the state of binary code
under execution, we were successful. The modeling process is meant to be a method that can be
directly implemented under our analysis framework. That objective greatly influenced how the
algebra was initially developed. Further, we believe that there are still methods to improve and

optimize the modeling process.
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We must observe that despite the seemingly illogical results that the theorem prover can give
us, it is because of the question we are asking. We provide an instance that effectively is asking,
“Given the constraints we have found, could we reach this path?” Indeed, it would perhaps be
more useful if we structured our analysis to come upon conditionals and other points of interest
within program execution and use the knowledge garnered from the analysis to ask, “Given the

constraints we have found, where can we go?”

5.2 Future Work

This thesis provides a baseline for mathematically modeling program state for code under ex-
ecution, a brief overview of related efforts for framework development, and discussion on how
the algebraic notation can be used to encode Boolean formulas for proving in a theorem prover
such as an SMT or SAT solver. However, this is just scratching the surface in the field of pro-

gram analysis and there are many efforts that can expand this work in many ways.

CONTROL FLOW AND DATA FLOW ANALYSIS. The heart of our framework is its ability to
perform robust analysis. Further research into control flow analysis is necessary to increase our
framework’s capability to analyze decision points in a program effectively. One area, in partic-
ular is the ability to detect loop invariants [70]. Detecting loops is a hard problem to solve and
a good deal of research has come out discussing methods to infer loops during analysis of code
under execution. The ability to infer the possibility of loops would be useful for implementa-
tion into our framework. A starting point for other control flow analysis elements to research

for implementation can be found in Muchnick [21]

Data flow analysis is a method of gathering information on how functions manipulate data and
keep track of values [21]. Data flow analysis can utilize the same CFG that would be used in
control flow analysis. Data flow analysis is critically important as taint analysis is a type of
data flow analysis since taint analysis is a method of keeping track of user-supplied data that
propagates through a process. Elements of data flow analysis, including reaching definitions,
interprocedural analysis, and shape analysis, both discussed in Nielson [11], are interesting

areas to look into further to increase the robustness of our analysis engine.

STATIC SINGLE ASSIGNMENT (SSA). Static Single Assignment (SSA) [63] is an effective
concept that is currently applied to compiler theory and program analysis. As of now, our al-
gebra and engine only use SSA for creating unique variables as they are encountered during

code execution and analysis. It may be useful to research how to further SSA concepts to op-
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timize the modeling and analysis process. One key concept in SSA is the use of phi functions.
How to effectively use these in our framework may reduce the overall amount of computation

necessary.

ALGORITHMS FOR BACK TRACING. Reinbacher and Brauer [53] provide very interesting
methods of reconstructing execution flows using forward and backward interpretation (tracing)
to. One of our primary goals is to be able to precisely trace back paths of execution that are
interesting to us for analysis—specifically paths that lead to program bugs. Research into using
our algebraically derived state to perform backtracking can be useful for identifying executions
paths of interest. For example, if the emulation/analysis engine executes down a path that results
in identification of a vulnerability, then being able to perform path reconstruction would of

value.

OVER- AND UNDER-APPROXIMATION. Cousot introduced Abstract Interpretation to per-
form program analysis by approximating the semantic behavior of a program [38,71]. Sym-
bolic execution can be considered a sub-case of abstract interpretation. One particular idea to
come from this field of program analysis is the idea of over- and under-approximation in order to
manage the amount of state exploration needed to find execution paths of interest. Research into
this would be interesting to help optimize the analysis framework and increase productivity in
finding execution paths that are of interest. Additionally, one must consider the advantages and
disadvantages of both over-approximation and under-approximation with regards to precision,

accuracy, exhaustion of state exploration, time of analysis, and resource allocation.

COUPLING FUZZING/CONCOLIC TESTING. Concolic testing [5, 6,24, 72-74] is a hybrid
method of testing that mixes both symbolic analysis and concrete analysis. The goal of cou-
pling both is the ability to conduct testing [3] in lockstep with the symbolic execution engine
to narrow down possible code coverage and minimize state explosion. Work should be done
to combine the capabilities of both symbolic analysis and some variant of concrete or semi-
concrete analysis, such as grammar-based fuzzing, to improve the ability to test programs for

interesting execution paths.

IMPLEMENTATION OF FORMAL ALGEBRA FOR THEOREM PROVING. This thesis has pre-
sented a formal algebra for representing the state of binary code under test and analysis. It has
also presented a short discussion of the necessary steps to encode the mathematical representa-
tion of this contextual state at the instruction, basic block, and program level to SMT-compatible

first-order logic formulae in order to feed it to an SMT solver or for bit-blasting the SMT for-
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mulas into Boolean SAT instances for inputting into a SAT solver in Chapter 4. Further work

must be done to fully implement this into our framework.

Ultimately our primary question, given our goals, is to ask the question, “Is this path reachable,
given our analysis?” This is the fundamental question we ask when we consider the execu-
tion and analysis that the emulation engine performs and feeds to the algebra. The example of
encoding SMT instances in Chapter 4 was but a simple and verbose example of testing a condi-
tion that would result in a branch. Optimizing the method of generating SMT or SAT instances
would be advantageous simply to minimize resources for processing theorems as they are fed.
As alluded to above, however, we may want to structure our analysis to instead ask, “Given the
constraints we have found, where can we go?” Additional efforts should be made to see if we
need to encode state in the manner we are currently doing so. For example, if there are registers
and memory addresses that are not part of a Boolean instance to determine reachability, perhaps

it is not necessary to encode those in a given Boolean instance.

Additionally, research must be done to optimize the points of execution where a theorem prover
must be called. Specifically, research should be done to ascertain whether it is necessary to
always encode every instruction, or whether this process could be reduced by using state derived
from each basic block to determine path reachability.

MODULAR THEOREM PROVING. SMT/SAT Solving, as discussed in Chapter 2 and Chap-
ter 3, is a large field of research because of the many intricacies associated with satisfiability as
applied to path reachability and code coverage. The mathematical algebra developed in this the-
sis relates to the theorem proving capability as the algebra must translate the program context
into Boolean arguments that will be fed into a SMT/SAT solver. Our framework would benefit
from research on creating and optimizing the ability to use different solvers in an automated

fashion.

It is hoped that this thesis will contribute ideas that will benefit the research community in

further progressing the state of the art in program analysis and bug hunting.
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APPENDIX A:

Program Listing: tree.c

| #include <stdio.h>
> #include <unistd.h>
3 #include <stdlib .h>

5 void print_out(const char xstring) {
6 printf ("%s", string);

9 int main(int argc, char xargv[]) {

10 char xtrue_statement = "This statement is true!\n";
11 char xfalse_statement = "This statement is false !\n";
12

13 int i = 0;

14

15 if (arge == 1) {

16 printf ("boo moar args please nom nom!\n");
17 } else if (argc == 2) {

18 for(i = 0; i < argc; i++) {

19 if (i %2 ==1) {

20 print_out(false_statement);
21 } else {

22 print_out(true_statement);
23 }

24 }

25 } else if (argc == 3) {

26 for(i = 0; i < argc; i++) {

27 if (i %2 =1) {

28 print_out(false_statement);
29 } else {

30 print_out(true_statement);
31 }

32 }

33 } else if (argc > 3) {

34 for(i = 0; i < argc; i++) {

35 if (1 %2 ==1) {

36 print_out(false_statement);
37 } else {

38 print_out(true_statement );
39 }

40 }

4 }

12 return 0;

13}
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APPENDIX B:
Disassembly Listing: tree

.init:080482B4 ;
cANiti080482B4 ; - mmm e e e
.init:080482B4 ;
.init:080482B4 ;

This file has been generated by The Interactive Disassembler (IDA)
Copyright (c) 2011 Hex-Rays, <support@hex-rays.com>

.init:080482B4 ; License info: XXXXXXXXXXXXXXX

.init:080482B4 ; XXXXXXXXXXXXXXXXX

.init:080482B4 5 A - - m oo

= Y- N N A N

. CODE SNIPPET ..

.init:080482B4 ;

.init:080482B4 ; Input MD5 : 4EFF7FC09CD531AA2A0983B4B09BBSBE
.init:080482B4 ; Input CRC32 : CCO031A6A

.init:080482B4

.init:080482B4 ; File Name . tree

.init:080482B4 ; Format : ELF for Intel 386 (Executable)
.init:080482B4 ; Imagebase : 8048000

.init:080482B4 ; Interpreter ’/lib/ld-linux.so.2’
.init:080482B4 ; Needed Library ’libc.so.6’

.init:080482B4 ;

.init:080482B4 ; Source File : ’crtstuff.c’

.init:080482B4 ; Source File : ’tree.c’

.init:080482B4

.init:080482B4 .686p

.init:080482B4 .mmx

.init:080482B4 .model flat

.init:080482B4 .intel_syntax noprefix

63

.text:080483F4 ; =============== S UBROUTINE

.text:080483F4

.text:080483F4 ; Attributes: bp-based frame

.text:080483F4

.text:080483F4 public print_out

.text:080483F4 print_out proc near ; CODE XREF: main+67p
.text:080483F4 ; main+75Ep ...
.text:080483F4

.text:080483F4 arg_0 = dword ptr 8

.text:080483F4

.text:080483F4 push ebp

.text:080483F5 mov ebp, esp

.text:080483F7 sub esp, 18h

.text:080483FA mov eax, offset format ; "Ys"
.text:080483FF mov edx, [ebptarg_0]

.text:08048402 mov [esp+4], edx

.text:08048406 mov [esp]l, eax ; format
.text:08048409 call _printf

.text:0804840E leave



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63 .

64
65
66
67
68
69
70
71
72
73
74
75
76
71
78

79 .

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95 .

96
97
98

.text
.text:
.text :0804840F
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
.text:
.text:

text

.text:
.text:
.text:08048429
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
.text:

text

.text:
.text:
.text:
.text:0804845C
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
:0804847E

text

.text:
.text:
.text:

:0804840F

0804840F

08048410
08048410
08048410
08048410
08048410
08048410
08048410

108048410

08048410
08048410
08048410
08048411
08048413

108048416

08048419
08048421

08048431
08048435
08048437
0804843E
08048443
08048448
08048448

108048448

08048448
0804844C
0804844E
08048456

108048458

08048458
08048458
08048458

0804845E
08048461
08048464
08048466
08048469
0804846B
0804846E

108048470

08048474
08048477
0804847C

0804847E
0804847E
0804847E

print_out

j =============== SUBROUTINE

retn

endp

; Attributes: bp-based frame

main

arg_O

loc_804847E:

public main

proc near ; DATA XREF: _start+17o
= dword ptr 8
push ebp
mov ebp, esp
and esp, OFFFFFFFOh
sub esp, 20h
mov dword ptr [esp+14h], offset aThisStatementI ; "This statement is true!\n"
mov dword ptr [esp+18h], offset aThisStatemen_0O ; "This statement is false!\n"
mov dword ptr [esp+1Ch], O
cmp [ebptarg_0], 1
jnz short loc_8048448
mov dword ptr [esp], offset s ; "boo moar args please nom nom!"
call _puts
jmp loc_804853F
; CODE XREF: main+25j
cmp [ebptarg_0], 2
jnz short loc_804849D
mov dword ptr [esp+1Chl, O
jmp short loc_804848F
; CODE XREF: main+86j
mov eax, [esp+1Ch]
mov edx, eax
sar edx, 1Fh
shr edx, 1Fh
add eax, edx
and eax, 1
sub eax, edx
cmp eax, 1
jnz short loc_804847E
mov eax, [esp+18h]
mov [esp]l, eax
call print_out
jmp short loc_804848A
; CODE XREF: main+5Ej
mov eax, [esp+14h]
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99 .text:08048482 mov [esp]l, eax

100 .text:08048485 call print_out

101 .text:0804848A

102 .text:0804848A loc_804848A: ; CODE XREF: main+6Cj
103 .text:0804848A add dword ptr [esp+1Ch], 1

104 .text:0804848F

105 .text:0804848F loc_804848F: ; CODE XREF: main+46j
106 .text:0804848F mov eax, [esp+1Ch]

107 .text:08048493 cmp eax, [ebptarg_0]

108 .text:08048496 jl short loc_8048458

109 .text:08048498 jmp loc_804853F

110 . texXt:0804840D ; —--mm oo
111 .text:0804849D

112 .text:0804849D loc_804849D: ; CODE XREF: main+3Cj
113 .text:0804849D cmp [ebptarg_0], 3

114 .text:080484A1 jnz short loc_80484EF

115 .text:080484A3 mov dword ptr [esp+1Ch]l, O

116 .text:080484AB jmp short loc_80484E4

117 . text:080484AD ; —-- - mmm oo
118 .text:080484AD

119 .text:080484AD loc_80484AD: ; CODE XREF: main+DBj
120 .text:080484AD mov eax, [esp+1Ch]

121 .text:080484B1 mov edx, eax

122 .text:080484B3 sar edx, 1Fh

123 .text:080484B6 shr edx, 1Fh

124 .text:080484B9 add eax, edx

125 .text:080484BB and eax, 1

126 .text:080484BE sub eax, edx

127 .text:080484C0 cmp eax, 1

128 .text:080484C3 jnz short loc_80484D3
129 .text:080484C5 mov eax, [esp+18h]

130 .text:080484C9 mov [esp]l, eax

131 .text:080484CC call print_out

132 .text:080484D1 jmp short loc_80484DF

133 .text:080484D3 ; —-- - -
134 .text:080484D3

135 .text:080484D3 loc_80484D3: ; CODE XREF: main+B3j
136 .text:080484D3 mov eax, [esp+14h]

137 .text:080484D7 mov [esp], eax

138 .text:080484DA call print_out

139 .text:080484DF

140 .text:080484DF loc_80484DF: ; CODE XREF: main+C1j
141 .text:080484DF add dword ptr [esp+1Ch], 1

142 .text:080484E4

143 .text:080484E4 loc_80484E4: ; CODE XREF: main+9Bj
144 .text:080484E4 mov eax, [esp+1Ch]

145 .text:080484E8 cmp eax, [ebpt+arg_0]

146 .text:080484EB jl short loc_80484AD

147 .text:080484ED jmp short loc_804853F

148 . text:080484EF ; —--- oo
149 .text:080484EF
150 .text:080484EF loc_80484EF: ; CODE XREF: main+91j
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151 .text:080484EF cmp [ebptarg_0], 3

152 .text:080484F3 jle short loc_804853F
153 .text:080484F5 mov dword ptr [esp+1Ch], O
154 .text:080484FD jmp short loc_8048536

155 . text:080484FF ; - - oo - oo
156 .text:080484FF

157 .text:080484FF loc_80484FF: ; CODE XREF: main+12Dj
158 .text:080484FF mov eax, [esp+1Ch]
159 .text:08048503 mov edx, eax

160 .text:08048505 sar edx, 1Fh

161 .text:08048508 shr edx, 1Fh

162 .text:0804850B add eax, edx

163 .text:0804850D and eax, 1

164 .text:08048510 sub eax, edx

165 .text:08048512 cmp eax, 1

166 .text:08048515 jnz short loc_8048525
167 .text:08048517 mov eax, [esp+18h]

168 .text:0804851B mov [esp]l, eax

169 .text:0804851E call print_out

170 .text:08048523 jmp short loc_8048531

171 .text:08048525 ; ——-- - oo
172 .text:08048525

173 .text:08048525 loc_8048525: ; CODE XREF: main+105j
174 .text:08048525 mov eax, [esp+14h]

175 .text:08048529 mov [esp], eax

176 .text:0804852C call print_out

177 .text:08048531

178 .text:08048531 loc_8048531: ; CODE XREF: main+113j
179 .text:08048531 add dword ptr [esp+1Ch], 1

180 .text:08048536

181 .text:08048536 loc_8048536: ; CODE XREF: main+EDj
182 .text:08048536 mov eax, [esp+1Ch]

183 .text:0804853A cmp eax, [ebpt+arg_0]

184 .text:0804853D jl short loc_80484FF

185 .text:0804853F

186 .text:0804853F loc_804853F: ; CODE XREF: main+33j
187 .text:0804853F ; main+88j

188 .text:0804853F mov eax, O

189 .text:08048544 leave

190 .text:08048545 retn

191 .text:08048545 main endp

192 .text:08048545
193 . text 08048545 ; —--m -

194 .text:08048546 align 10h
195

196 .. CODE SNIPPET ..

197

198 .rodata:08048608 ;

199 .rodata:08048608

200 .rodata:08048608 ; Segment type: Pure data

201 .rodata:08048608 ; Segment permissions: Read

202 .rodata:08048608 _rodata segment dword public ’>CONST’ use32
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203 .

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218

219 .

220
221
222

223 ..

rodata

.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:
.rodata:

.rodata:

rodata

.rodata:

.rodata:

CODE

: 08048608

08048608
08048608
08048608
0804860C
0804860C
08048610
08048610
08048611
08048612
08048613
08048614
08048614
08048617
08048630
0804864A

:0804864A

0804864A
0804864A

assume cs:_rodata

;org 8048608h

public _fp_hw
_fp_hw dd 3

public _IO_stdin_used
_I0_stdin_used dd 20001h
public __dso_handle
__dso_handle db 0
db 0
db 0
db 0
; char format[3]
format db ’%s’,0 ; DATA XREF: print_out+6o
aThisStatementIl db ’This statement is true!’,0Ah,0 ; DATA XREF: main+9o

aThisStatemen_O db ’This statement is false!’,0Ah,0 ; DATA XREF: main+llo
; char s[]
s db ’boo moar args please nom nom!’,0 ; DATA XREF: main+270

_rodata ends

SNIPPET ..
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APPENDIX C:

Program Listing: simple-branch.c

| #include <stdio.h>
> #include <unistd.h>
3 #include <stdlib .h>

5 int main(int argc, char xargv[]) {

6 unsigned int x;

8 X = argc;

9 if (x > 0 && x <= 9) {
10 printf ("Hello !\n");

11 } else {

12 printf ("Goodbye!\n");
13 }

14 return 0;

15}
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= Y- N N A N

APPENDIX D:

Disassembly Listing: simple-branch

.text:080483B4 ; =============== S UBROUTINE
.text:080483B4

.text:080483B4 ; Attributes: bp-based frame
.text:080483B4

.init:08048290 ;

cANit 08048290 ; o mmm e e e
.init:08048290 ;
.init:08048290 ;
.init:08048290 ;
.init:08048290 ;
cinit:08048290 ; - - mm e m e e mme—mme e
.init:08048290 ;

.init:08048290 ; Input MD5 : 38AA512B47816C6DASAE8356A2099013

.init:08048290 ; Input CRC32 : B1D4A87C

.init:08048290

This file has been generated by The Interactive Disassembler (IDA)
Copyright (c) 2011 Hex-Rays, <support@hex-rays.com>
License info: XXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXX

.init:08048290 ; File Name : simple-branch
.init:08048290 ; Format : ELF for Intel 386 (Executable)
.init:08048290 ; Imagebase : 8048000

.init:08048290 ; Interpreter ’/lib/ld-linux.so.2’
.init:08048290 ; Needed Library ’libc.so.6’
.init:08048290 ;

.init:08048290 ; Source File : ’crtstuff.c’
.init:08048290 ; Source File : ’simple-branch.c’
.init:08048290

.init:08048290 .686p
.init:08048290 . mmx
.init:08048290 .model flat

.init:08048290 .intel_syntax noprefix

. CODE SNIPPET ..

.text:080483B4 public main

.text:080483B4 main proc near ; DATA XREF: _start+17o
.text:080483B4

.text:080483B4 arg_O = dword ptr 8

.text:080483B4

.text:080483B4 push ebp

.text:080483B5 mov ebp, esp

.text:080483B7 and esp, OFFFFFFFOh

.text:080483BA sub esp, 20h

.text :080483BD mov eax, [ebptarg_0]

.text:080483C0 mov [esp+1Ch], eax

.text:080483C4 cmp dword ptr [esp+1Chl, 9
.text:080483C9 ja short loc_80483D9

.text:080483CB mov dword ptr [esp], offset s ; "Hello!"
.text:080483D2 call _puts
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47 .text:080483D7 jmp short loc_80483E5
48 .text:080483D9 ; —--- -
49 .text:080483D9

50 .text:080483D9 loc_80483D9: ; CODE XREF: main+15j

51 .text:080483D9 mov dword ptr [esp], offset aGoodbye ; "Goodbye!"
52 .text:080483E0 call _puts

53 .text:080483E5

54 .text:080483E5 loc_80483E5: ; CODE XREF: main+23j

55 .text:080483E5 mov eax, O

56 .text:080483EA leave

57 .text:080483EB retn

58 .text:080483EB main endp

59
60
61 .. CODE SNIPPET ..
62

63 .rodata:080484A8 ;
64 .rodata:080484A8
65 .rodata:080484A8 ; Segment type: Pure data
66 .rodata:080484A8 ; Segment permissions: Read

67 .rodata:080484A8 _rodata segment dword public ’CONST’ use32

68 .rodata:080484A8 assume cs:_rodata

69 .rodata:080484A8 ;org 80484A8h

70 .rodata:080484A8 public _fp_hw

71 .rodata:080484A8 _fp_hw dd 3

72 .rodata:080484AC public _IO_stdin_used

73 .rodata:080484AC _IO_stdin_used dd 20001h

74 .rodata:080484B0 public __dso_handle

75 .rodata:080484B0 __dso_handle db 0

76 .rodata:080484B1 db 0

77 .rodata:080484B2 db 0

78 .rodata:080484B3 db 0

79 .rodata:080484B4 ; char s[]

80 .rodata:080484B4 s db ’Hello!’,0 ; DATA XREF: main+17o0
81 .rodata:080484BB ; char aGoodbyel[]

82 .rodata:080484BB aGoodbye db ’Goodbye!’,0 ; DATA XREF: main:loc_80483D9o
83 .rodata:080484BB _rodata ends

84 .rodata:080484BB
85
86 .. CODE SNIPPET ..
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APPENDIX E:

Program Listing: loop-branch.c

| #include <stdio.h>
> #include <stdlib .h>
3 #include <unistd.h>

int main(int argc, char sargv[]) {

int i = 0;

if (argc >= 0 && argec <= 9) {
for (i = 0; i < argc; i++) {
printf ("Hello! argv[%d] = %s\n", i, argv[i]);
}
} else {
for (i = 0; i < argc; i++) {
printf ("Goodbye! argv[%d] = %s\n", i, argv[il]);

}

return 0;
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APPENDIX F:
Disassembly Listing: loop-branch

.init:08048294 ;
.init:08048294 ; - mmm oo e
.init:08048294 ;
.init:08048294 ;

This file has been generated by The Interactive Disassembler (IDA)
Copyright (c) 2011 Hex-Rays, <support@hex-rays.com>

= Y- N N A N

. CODE SNIPPET ..

.init:08048294 ; License info: XXXXXXXXXXXXXXX
.init:08048294 ; XXXXXXXXXXXXXXXXX

Linit 08048294 § 4o oo oo oo
.init:08048294 ;

.init:08048294 ; Input MD5 : 6E132184033BD59125FE1D6F54649532
.init:08048294 ; Input CRC32 : FB45EB9B

.init:08048294

.init:08048294 ; File Name : loop-branch

.init:08048294 ; Format : ELF for Intel 386 (Executable)
.init:08048294 ; Imagebase : 8048000

.init:08048294 ; Interpreter ’/lib/ld-linux.so.2’

.init:08048294 ; Needed Library ’libc.so.6’

.init:08048294 ;

.init:08048294 ; Source File : ’crtstuff.c’

.init:08048294 ; Source File : ’loop-branch.c’

.init:08048294

.init:08048294 .686p

.init:08048294 .mmx

.init:08048294 .model flat

.init:08048294 .intel_syntax noprefix
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.text:080483C4 ; =============== S UBROUTTINE
.text:080483C4

.text:080483C4 ; Attributes: bp-based frame

.text:080483C4

.text:080483C4 public main

.text:080483C4 main proc near ; DATA XREF: _start+17o
.text:080483C4

.text:080483C4 arg_O = dword ptr 8

.text:080483C4 arg_4 = dword ptr OCh
.text:080483C4

.text:080483C4 push ebp

.text:080483C5 mov ebp, esp
.text:080483C7 and esp, OFFFFFFFOh
.text:080483CA sub esp, 20h
.text:080483CD mov dword ptr [esp+1Ch], O
.text:080483D5 cmp [ebptarg_0], 0
.text:080483D9 js short loc_8048420
.text:080483DB cmp [ebptarg_0], 9

.text :080483DF jg short loc_8048420



47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

63 .

64
65
66
67
68
69
70
71
72
73
74
75
76
71
78

79 .

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

95 .

96
97
98

.text
.text
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
.text:
.text:

text

.text:
.text:08048415
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
.text:

text

.text:
.text:
.text:08048436
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text:
.text
.text:
.text:
.text:
:0804845D

text

.text:
.text:
.text:

:080483E1
:080483E9

080483EB
080483EB
080483EB
080483EB
080483EF
080483F2
080483F5
080483F7

:080483FC

08048400
08048404
08048408
0804840B
08048410

108048415

08048415

08048419
0804841C
0804841E
08048420
08048420
08048420
08048420
08048420

108048428

08048424
0804842A
0804842A
0804842A

:0804842E

08048431
08048434

0804843B
0804843F
08048443
08048447
0804844A
0804844F
08048454
08048454

108048454

08048458
0804845B
0804845D

0804845D
08048462
08048463

loc_80483EB:

loc_8048415:

loc_8048420:

loc_804842A:

loc_8048454:

loc_804845D:

mov
shl
add
mov
mov
mov
mov
mov
mov
call
add

mov
shl
add
mov
mov
mov
mov
mov
mov
call
add

mov
cmp
jl

mov
leave

retn

dword ptr [esp+1Chl, O
short loc_8048415

eax, [esp+1Ch]

eax, 2

eax, [ebpt+arg_4]

edx, [eax]

eax, offset format ; "Hello! argv[/d] = %s\n"

[esp+8], edx

edx, [esp+1Ch]

[esp+4], edx
[esp]l, eax

_printf

; CODE XREF: main+58j

; format

dword ptr [esp+1Ch], 1

eax, [esp+1Ch]

eax, [ebpt+arg_0]
short loc_80483EB
short loc_804845D

; CODE XREF: main+25j

; CODE XREF: main+15j

; main+1Bj

dword ptr [esp+1Chl, O
short loc_8048454

eax, [esp+1Ch]

eax, 2

eax, [ebpt+arg_4]

edx, [eax]

eax, offset aGoodbyeArgvDS ; "Goodbye! argv[/d] = %s\n"

[esp+8], edx

edx, [esp+1Ch]

[esp+4], edx
[esp], eax

_printf

; CODE XREF: main+97j

; format

dword ptr [esp+1Ch], 1

eax, [esp+1Ch]

eax, [ebpt+arg_0]
short loc_804842A

eax, O
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; CODE XREF: main+64j

; CODE XREF: main+bAj



99 .text:08048463 main endp
100 .text:08048463

101

102 .. CODE SNIPPET ..
103

104 .rodata:08048528 ;

105 .rodata:08048528
106 .rodata:08048528 ; Segment type: Pure data
107 .rodata:08048528 ; Segment permissions: Read

108 .rodata:08048528 _rodata segment dword public ’CONST’ use32
109 .rodata:08048528 assume cs:_rodata

110 .rodata:08048528 ;org 8048528h

111 .rodata:08048528 public _fp_hw

112 .rodata:08048528 _fp_hw dd 3

113 .rodata:0804852C public _IO_stdin_used

114 .rodata:0804852C _IO_stdin_used dd 20001ih

115 .rodata:08048530 public __dso_handle

116 .rodata:08048530 __dso_handle db 0

117 .rodata:08048531 db 0

118 .rodata:08048532 db 0

119 .rodata:08048533 db 0

120 .rodata:08048534 ; char format[]

121 .rodata:08048534 format db ’Hello! argv([/d] = %s’>,0Ah,0 ; DATA XREF: main+33o

122 .rodata:0804854A ; char aGoodbyeArgvDS[]

123 .rodata:0804854A aGoodbyeArgvDS db ’Goodbye! argv[%d] = %s’,0Ah,0 ; DATA XREF: main+72o
124 .rodata:0804854A _rodata ends

125 .rodata:0804854A

126

127 .. CODE SNIPPET

7
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#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[]) {
	int i = 0;

	if(argc >= 0 && argc <= 9) {
		for (i = 0; i < argc; i++) {
			printf("Hello! argv[%d] = %s\n", i, argv[i]);
		}
	} else {
		for (i = 0; i < argc; i++) {
			printf("Goodbye! argv[%d] = %s\n", i, argv[i]);
		}
	}
	return 0;	
}



#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

int main(int argc, char *argv[]) {
	unsigned int x;

	x = argc;
	if (x >= 0 && x <= 9) {
		printf("Hello!\n");
	} else {
		printf("Goodbye!\n");
	}
	return 0;
}



#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>

void print_out(const char *string) {
	printf("%s", string);
}

int main(int argc, char *argv[]) {
	char *true_statement = "This statement is true!\n";
	char *false_statement = "This statement is false!\n";
	
	int i = 0;

	if (argc == 1) {
		printf("boo moar args please nom nom!\n");
	} else if (argc == 2) {
		for(i = 0; i < argc; i++) {
			if (i % 2 == 1) {
				print_out(false_statement);
			} else {
				print_out(true_statement);
			}
		}
	} else if (argc == 3) {
		for(i = 0; i < argc; i++) {
			if (i % 2 == 1) {
				print_out(false_statement);
			} else {
				print_out(true_statement);
			}
		}
	} else if (argc > 3) {
		for(i = 0; i < argc; i++) {
			if (i % 2 == 1) {
				print_out(false_statement);
			} else {
				print_out(true_statement);
			}
		}
	} 
	return 0;
}


